Internal Conversion	Motivation	Experimental Details	Preliminary Results	Conclusion O	Acknowledgements ○

The Conversion Electron Study of ¹¹⁰Cd

Badamsambuu Jigmeddorj

University of Guelph

February 26, 2012

Badamsambuu Jigmeddorj The Conversion <u>Electron Study of ¹¹⁰Cd</u> University of Guelph

 00000000 0 		

Internal Conversion Process

Internal conversion is a radioactive decay process.

In this process an excited nucleus interacts with an electron in one of the lower atomic orbitals.

This causes the electron to be emitted from the atom.

In this case, a high-energy electron is emitted from the radioactive atom.

$$E_e = (E_i - E_f) - E_B$$

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Internal Conversion	Motivation	Experimental Details	Preliminary Results	Conclusion	Acknowledgements
•					

Internal Conversion Process

Internal conversion is a radioactive decay process.

In this process an excited nucleus interacts with an electron in one of the lower atomic orbitals.

This causes the electron to be emitted from the atom.

In this case, a high-energy electron is emitted from the radioactive atom.

$$E_e = (E_i - E_f) - E_B \tag{1}$$

The internal conversion process (2) competes with gamma decay(1).

This competition is defined by the internal conversion coefficient:

$$\alpha = I_e / I_\gamma \tag{2}$$

 I_e is the intensity of the conversion electrons and I_γ is the intensity of the gamma radiation.

This can result in the emission of an X-ray(3) or the emission of an Auger electron(4).

Conversion

Internal Conversion	Motivation ●0000000	Experimental Details	Preliminary Results	Conclusion O	Acknowledgements O

Introduction

- The motivation of this study is simply to investigate vibrational motion in nuclei.
- We chose Cadmium (Cd) because this is the best example of a vibrational nuclei.
- Cd isotopes have been studied with many techniques but not with e⁻-γ coincidence (conversion electron).

Internal Conversion	Motivation ○●○○○○○○	Experimental Details	Preliminary Results	Conclusion O	Acknowledgements

Collective model

- The vibrational motion of nucleus is described by the Collective Model which was first introduced by Borh and Motelson ¹
- In the Collective Model, the nucleus vibrates with an average spherical shape².
- An instantaneous, time dependent shape of the nucleus is described by spherical harmonics.

$$R(t) = R_{av} + \sum_{\lambda \ge 1} \sum_{\mu = -\lambda}^{+\lambda} \alpha_{\lambda\mu} Y_{\lambda\mu}(\theta, \phi)$$
(3)

• Every single λ corresponds to a different nuclear shape.

¹A. Bohr and B.R. Mottelson, Phys. Rev. 89, 316 (1953).

²K.S.Krane. Introductoty Nuclear Physics., p139, (1987)... <♂ → < ≧ → < ≧ → < ≧ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < > > < > < > < > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > > < > < > > < > > < > > < > < > > < > < > < > > < > > < > > < > < > < > < > < > < > < < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < > < <

Badamsambuu Jigmeddorj

Internal Conversion	Motivation 00●00000	Experimental Details	Preliminary Results	Conclusion O	Acknowledgements ○

- ► λ=0, the monopole term, zero change in the shape of the nucleus.
- ▶ λ=1, the dipole term, a shift in the nuclear mass centre (8-20 MeV).

These two terms are ignored in this work.

- ▶ λ =2, quadrupole term, quadrupole vibrations,
- ▶ λ =3, octupole term, octupole vibrations,

The lowest order expansion will be $\lambda=2$ in this study.

$$R(\theta,\phi) = R_0[1 + \sum_{\mu=-2}^{+2} \alpha_{2\mu}(t) Y_2^{\mu}(\theta,\phi)]$$
(4)

Badamsambuu Jigmeddorj

Internal Conversion	Motivation 000●0000	Experimental Details	Preliminary Results	Conclusion	Acknowledgements

As a vibrational nucleus, ¹¹⁰*Cd* exhibits multiphonon states.

The energy of multiphonon states increases linearly with number of phonons

$$E_n = \hbar\omega(n + \frac{5}{2}) \qquad (5)$$

Where *n* is phonon number.

Internal Conversion	Motivation 000●0000	Experimental Details	Preliminary Results	Conclusion O	Acknowledgements ○

As a vibrational nucleus, ¹¹⁰*Cd* exhibits multiphonon states.

The energy of multiphonon states increases linearly with number of phonons

$$E_n = \hbar\omega \left(n + \frac{5}{2}\right) \tag{5}$$

Where

n is phonon number.

Multiphonon states in Vibrational Model.

level energy – angular momentum and parity – transition strengths Even though the Collective Model describes many features of nuclei it is not enough to accurately describe real nuclei.

Badamsambuu Jigmeddorj The Conversion Electron Study of ¹¹⁰Cd

Internal Conversion	Motivation	Experimental Details	Preliminary Results	Conclusion	Acknowledgements
	00000000				

Interacting Boson Model

- ► A new approach to nuclear structure, IBM, was first introduced by Arima and lachello³.
- ▶ IBM-1, makes no distinction between protons and neutrons.
- ► IBM-2 involves an explicit distinction between protons and neutrons.
- In this model the collective features of nuclei are expressed in the language of group theory based on dynamical symmetries.
- This model well describes the collective low-lying states of even-even nuclei.
- For ¹¹⁰Cd, we are going to use a U(5) symmetry limit (used for spherical vibrators).

³A. Arima and F. lachello, Ann. Phys. 99, 253 (1976). □ → <♂ → < ≥ → < ≥ → ⊃ <

Badamsambuu Jigmeddorj

The experimental level scheme of ¹¹⁰Cd from⁴.

multiphonon states, additional states (intruder states)

Why are there additional states?

⁴F. Corminboeuf et al., Phys. Rev. C 63, 014305 (2000).

Badamsambuu Jigmeddorj

Proton configurations for the normal and intruder states in $\frac{110}{48}$ Cd

・ロト ・ 日 ト ・ 日 ト ・

University of Guelph

This configuration gives another set of states. **Those states are called the intruder states.**

Badamsambuu Jigmeddorj The Conversion Electron Study of ¹¹⁰Cd

Multiphonon states with normalized B(E2) in Vibrational Model from ⁵.

⁵ Jack C. Bangay, Msc., Thesis (2010).

Badamsambuu Jigmeddorj The Conversion Electron Study of ¹¹⁰Cd University of Guelph

Multiphonon states with normalized B(E2) in Vibrational Model from ⁵.

Internal Conversion	Motivation	Experimental Details	Preliminary Results	Conclusion O	Acknowledgements O
Experimental Details					

Experimental Details (TRIUMF-ISAC)

Badamsambuu Jigmeddorj

Internal Conversion	Motivation	Experimental Details	Preliminary Results	Conclusion O	Acknowledgements ○
Experimental Details					

 $8\pi \gamma$ -ray spectrometer.

The $8\pi \gamma$ -ray spectrometer consists of 20 Compton-suppressed high-purity germanium detectors is used for γ -ray detection.

< □ > < ---->

Internal Conversion

Motivation

Experimental Details

Preliminary Results

Conclusion

Acknowledgements

Experimental Details

 $8\pi \ \gamma$ -ray spectrometer.

The $8\pi \gamma$ -ray spectrometer consists of 20 Compton-suppressed high-purity germanium detectors is used for γ -ray detection.

Badamsambuu Jigmeddorj

The Conversion Electron Study of 110 Cd

PACES array.

The PACES (Pentagonal Array for Conversion Electron Spectroscopy) array of 5 Si(Li) detectors is used for conversion endetection.

Internal Conversion	Motivation	Experimental Details	Preliminary Results	Conclusion O	Acknowledgements O
Experimental Details					

Tape setup through the array.

The beam was implanted onto the tape of a Moving Tape Collector at the center of 8π spectrometer.

The Moving Tape Collector.

The tape was moved into the moving tape collector which is behind the lead shielding to remove any long-lived contaminants.

Internal Conversion	Motivation	Experimental Details	Preliminary Results ●○○○	Conclusion O	Acknowledgements
Preliminary Results					

Preliminary Results

We used the Radware package to fit peaks in the coincidence spectra.

This package allows us to determine the energies and intensities of conversion $e^-\,{\rm transitions.}$

We took 15 gates on γ energies.

Badamsambuu Jigmeddorj

The Conversion Electron Study of ¹¹⁰Cd

University of Guelph

University of Guelph

We built a partial level scheme from this spectrum.

Badamsambuu Jigmeddorj

Partial level scheme of ¹¹⁰Cd displaying the observed conversion electron transitions. We identified a previously unobserved transition. We also identified four new transitions which are not in the NNDC data set

Internal O	Conversion	Motivation	Experimental Det	ails Prelimina 000●	ary Results	Conclusion A	cknowledgements
Prelimi	nary Results						
	Adopted	Identified	Multi-	Exp.	Theo. E1	Theo. M1	Theo. E2
	E_{γ} , [keV]	e ⁻ shells	polarities	[K/L]	[K/L]	[K/L]	[K/L]
ĺ	113.2	K	-	-	-	-	-
ĺ	120.1	K, L, M	M1 (+E2)	$6.59{\pm}0.22$	8.16	8.01	4.35
	137.1	K	E1	-	-	-	-
ĺ	187.8	K	M1(+E2)	-	-	-	-
ĺ	194.9	K	E2+M1	-	-	-	-
	244.8	K	M1 (+E2)	$5.60{\pm}0.32$	8.36	8.17	6.41
	461.7	K	E1	-	-	-	-
ĺ	560.3	K	E2 (+M3)	-	-	-	-
	581.9	K	M1 (+E2)	-	-	-	-
	584.7	K, L	M1+E2	$3.51{\pm}0.48$	8.54	8.40	7.82
	641.7	K, L	M1 (+E2)	$6.44{\pm}0.55$	8.56	8.42	7.92
[657.8	K, L, M	E2	6.70±0.43	8.56	8.43	7.95
	677.6	K	M1 (+E2)	-	-	-	-
[707.4	K, L, M	E2	$4.70 {\pm} 0.15$	8.58	8.44	8.02
	759.9	K	M1+E2	-	-	-	-
	818	K	M1 (+E2)	-	-	-	-
	884.7	K, L, M	E2	$6.39{\pm}0.31$	8.63	8.50	8.22
[937.4	K, L, M	E2 (+M3)	$7.96{\pm}0.46$	8.64	8.51	8.26
[997.2	K	E1 (+M2)		-	-	-
[1019.5	K	E2	-	-	-	-

Table shows identified conversion electron transitions and subshell ratios.

Badamsambuu Jigmeddorj

University of Guelph

The Conversion Electron Study of 110 Cd

Internal Conversion	Motivation	Experimental Details	Preliminary Results	Conclusion ●	Acknowledgements	
~ · ·						

- This is our first investigation using the e⁻-γ coincidence method.
 - We have identified 4 new transitions and 1 unobserved transition.
 - Through sub-shell ratios, we will be able to determine the multipolarities and conversion coefficients.
 - We will try to extract the E0 intensities using the absolute conversion coefficients.
 - This will allow us to firmly assign the intruder excitations.

Conclusion

Internal Conversion	Motivation	Experimental Details	Preliminary Results	Conclusion	Acknowledgements
					•

Acknowledgements

P.E. Garrett, A. Diaz-Varela, J.C. Bangay, G.A. Demand, K.L. Green, K.G. Leach, C.E. Svensson, C.Sumithrarachchi, S. Triambak, and J. Wong A.B. Garnsworthy, G.C. Ball, and G. Hackman

D. Cross

W.D. Kulp and J.L. Wood

S.W. Yates

Canadian Institute of Nuclear Physics

University of Guelph

Badamsambuu Jigmeddorj The Conversion Electron Study of ¹¹⁰Cd