Camille Bélanger-Champagne McGill University

Charged Particle Correlations in Minimum Bias Events at ATLAS

- Physics motivation
- Minbias event and track selection
- Azimuthal correlation results
- Forward-Backward correlation results

February 26th 2012, WNPPC 2012

Overview

√s (TeV)

Physics Background

- Perturbative QCD calculations cannot be done in the "soft" regime where the transverse momentum transfer between initial and final states is small
 - Beam-beam remnants, multiple parton interactions, initial and final state radiation → long-range correlations
- Data predictions done in MC simulations via phenomenological models with many parameters
 - New/improved measurements of quantities sensitive to soft QCD effects deepens physics understanding and improves models.

Minimum bias collisions

- Event sample representative of the overall collision cross-section
- Dominated by QCD $2 \rightarrow 2$ process
- Sensitive to non-perturbative "soft" QCD
- Collected using a dedicated trigger at ATLAS

Minimum bias sample

- Samples collected with the ATLAS minimum bias trigger
 - Beam Pickup Timing devices (BPTX) signals beam presence
 - electrostatic beam pick-ups ± 175 m from centre
 - Minimum Bias Trigger Scintillators (MBTS)
 - at detector ends in front of endcap-calorimeter at ± 3.56 m
 - $2.09 < |\eta| < 3.84$

Track selection

Associate all tracks to PVs and then select good quality tracks associated to those PVs: in early ATLAS data, select events with only 1 PV.

Minimize fakes, cosmics, conversions, long-lived resonances, vertex misassociatio

Track selection criteria:

- $p_T > 0.5 GeV$
- |η|<2.5
- Association to vertex and hit requirement

Azimuthal corr. - Crest shape

7

Azimuthal corr. - Crest shape

Azimuthal corr. - Crest shape

"Same minus opposite"

"Same minus opposite"

Corrections and Systematics

• Correct for tracking efficiency, leading and nonleading tracks

- Main sources of systematics
 - Uncertainty on event acceptance
 - Leading track correction

Forward-Backward correlations

- Correlation is defined to the normalised covariance between the forward and the backward distribution, relative to the mean value of each
 - Particle multiplicity and (new!) Σp_T
 - Symmetric or non-symmetric

$$\begin{split} \rho_{fb}^{n} &= \frac{\langle (n_{f} - \langle n_{f} \rangle)(n_{b} - \langle n_{b} \rangle) \rangle}{\sqrt{\langle (n_{f} - \langle n_{f} \rangle)^{2} \rangle \langle (n_{b} - \langle n_{b} \rangle)^{2} \rangle}} = \frac{\Sigma x_{f}^{n} x_{b}^{n}}{N \sigma_{f}^{n} \sigma_{b}^{n}} \\ \rho_{fb}^{p_{\mathrm{T}}} &= \frac{\langle (\sum p_{\mathrm{T}}^{f} - \langle \sum p_{\mathrm{T}}^{f} \rangle)(\sum p_{\mathrm{T}}^{b} - \langle \sum p_{\mathrm{T}}^{b} \rangle) \rangle}{\sqrt{\langle (\sum p_{\mathrm{T}}^{f} - \langle \sum p_{\mathrm{T}}^{f} \rangle)^{2} \rangle \langle (\sum p_{\mathrm{T}}^{b} - \langle \sum p_{\mathrm{T}}^{b} \rangle)^{2} \rangle}} = \frac{\Sigma x_{f}^{p_{\mathrm{T}}} x_{b}^{p_{\mathrm{T}}}}{N \sigma_{f}^{p_{\mathrm{T}}} \sigma_{b}^{p_{\mathrm{T}}}} \end{split}$$

FB correlations

- Data corrections and unfolding to particle-level applied via a linear regression method and using MC simulations
 - Tracking, vertex definition, vertex finding, trigger, etc
- Main sources of systematic uncertainties
 - Track-finding efficiency ~1-3% depending on detector position
 - Vertex- and trigger-finding efficiencies $\sim 0.2\%$ each

FB results

18

Summary of angular correlations

- Studies soft QCD via angular and forward-backward correlations in minimum bias events
 - Overall shape well-described in many popular tunes but discrepancy in the details
- Azimuthal correlations
 - discrepancy increases with η range
- FB correlations
 - found to be much stronger at 7TeV than 900GeV
 - differ from popular MC models by up to 15% at 7TeV, more at 900GeV
- Increasingly challenging to perform at ATLAS, but valuable insights in new η and energy regimes

Backup

C. B.-Champagne

Overview of tunes

Tune	Characteristics	Tune	Characteristics
A	 Q²-ordered showers large starting scale for ISR 1 GeV of primordial k_T 	P HARD	 P0 based more activity from perturbative physics harder hadronization spectrum, lower primordial k_T
DW	 Similar to tune A 2 GeV of primordial k_T more ISR designed fit CDF Drell-Yan data 	P SOFT	 P0 based more activity from non-perturbative physics softer hadronisation, more active beam remnant fragmentation
ProQ ²	 Q²-ordered showers tuned with Professor 	P0 NOCR	 P0 based no colour reconnections tuned with Professor
P0	 interleaved p_T-ordered showers annealing colour reconnections large amount of MPI 	GAL	 P0 based colour reconnection probability related to change in area defined by colour strings (generalized area law)