Plans for Life Cool Neutrons at RUNF

Blair Jamieson/ The University of Winnipeg

WNPPC 2012 Mont Tremblant, Québec

TRIUMF 4004 Wesbrook Mall Vancouver, B.C. CANADA V6T 2A3

Outline for Talk

- Properties of Ultra Cold Neutrons (UCN)
- Production of UCN TRIUMF source
- Probing physics of neutrons with UCN
- Electric Dipole Moment of neutrons
- Schedule for TRIUMF neutron EDM expt.
- Conclusions

Ultracold Neutrons (UCN)

- UCN are neutrons that are moving so slowly that they are totally reflected from a variety of materials.
- So, they can be confined in material bottles for long periods of time.
- Typical parameters:
 - velocity < 8 m/s = 30 km/h</p>
 - temperature < 4 mK
 - kinetic energy < 300 neV
- Interactions:
 - Gravity: V=mgh
 - Magnetic: V=-µ●B
 - Strong: V=V_{eff}
 - Weak: $\tau = 885.7 \text{ s} = 15 \text{ mins}$

How to make lots of neutrons: Liberate them from nuclei!

In a nuclear reactor (fission). At an accelerator (spallation).

Accelerator

Spallation Neutron Source, Oak Ridge, Tennessee, www.sns.gov Insititut Laue-Langevin, Grenoble, France, www.ill.fr

TRIUMF UCN spallation neutron source concept

- Liberate neutrons by proton-induced spallation (several n per p).
- Moderate (thermalize) in cold (20 K) D₂O.
- Cold neutrons then "downscatter" to near zero energy (4 mK) in superfluid helium through phonon production.

Fundamental Physics with UCN

- How fast do neutrons decay? BBN.
- Details about how neutrons decay tell us about the weak nuclear force. (V_{ud})
- Does the neutron possess an electric dipole moment? The predominance of matter over antimatter in the universe.

Interactions of neutrons with gravity and are there extra dimensions?

Neutron Electric Dipole Moment (n-EDM, d_n)

 $d_n \Rightarrow \mathcal{X} \Rightarrow \mathcal{C} \mathcal{P}$

New sources of CP violation are required to explain the baryon asymmetry of the universe.

• Complementary to Rn-EDM, Fr-EDM @ TRIUMF.

Experimental technique:

- put UCN in a bottle with *E*-, *B*-fields
- search for a change in spin precession frequency (at Larmor frequency) upon *E* reversal.

 $h_{\nu} = 2 \mu_n B \pm 2 d_e E$

Electric Dipole Moment: $d_n = (h/2E)(v_+ - v_-)$

Precesses Faster

Precesses Slower

EDMs, the SM, and beyond

"n-EDM has killed more theories than any other single experiment!"

Past and Future n-EDM efforts

- Sussex-RAL-ILL expt. ($d_n < 3 \times 10^{-26}$ e-cm)
 - 0.7 UCN/cc, room temp, in vacuo
- New experiments:
 - CryoEDM (ILL)
 - SNS (USA)
 - PSI
 - Ours (Japan-Canada)
 - Munich, PNPI, J-PARC, ...
- Different superthermal sources
 - Various approaches for EDM

jamieson@uwinnipeg.ca

Sussex-RAL-ILL experiment

Neutron Electric Dipole Moment Search with a Spallation Ultracold Neutron Source at TRIUMF

Spokespeople: Y. Masuda (KEK), J.W. Martin (Winnipeg)

Collaborators: T. Adachi, K. Asahi, M. Barnes, C. Bidinosti, J. Birchall, L. Buchmann, C. Davis, T. Dawson, J. Doornbos, W. Falk, M. Gericke, R. Golub, K. Hatanaka, B. Jamieson, S. Jeong, S. Kawasaki, A. Konaka, E. Korkmaz, E. Korobkina, M. Lang, L. Lee, R. Mastumiya, K. Matsuta, M. Mihara, A. Miller, T. Momose, W.D. Ramsay, S.A. Page, Y. Shin, H. Takahashi, K. Tanaka, I. Tanihata, W.T.H. van Oers, Y. Watanabe

(KEK, Titech, Winnipeg, Manitoba, TRIUMF, NCSU, RCNP, UNBC, UBC, Osaka)

Summer students at TRIUMF (2011): Moritz Hahn, Florian Fischer, Gary Yang, Eric Miller

jamieson@uwinnipeg.ca

Japan-Canada nEDM experiment

- Spherical coil for DC field
- Xe-129 nuclear-spin buffergas comagnetometer
- Room-temp experiment, keeping EDM cell size small, anticipating gains in UCN density
- Modern magnetic shielding, cost reduced with cell size
- Superfluid He-4 UCN source
- Basic prototype in operation

KEK-RCNP UCN Source

Experimental Setup

n-EDM development in Japan

Masuda, et al. Beam tests July, December 2009, April 2010, February 2011, October 2011.

jamieson@uwinnipeg.ca

- Development of:
 - Comagnetometers
 - Ramsey resonance
 - New B-field geometry
 ₁₄
 - HV, EDM cell

Proton Beam 1µA x 100 s

amieson@uwinnipeg.ca

ち

 \square

Time [s]

~15 UCN/cc in region just outside shield wall. a remarkably reliable source of UCN!

Upstream UCN Storage Time

Storage Time in EDM Cell

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada TRIUMF UCN SOURCE

. LABORATORY FOR PARTICLE AND NUCLEAR PHYSICS

Plan for highest intensity UCN source

- Gain Factors (40 μA @ 500 MeV):
 - Beam energy, power x 70
 - Production volume x 1.5
 - Storage lifetime x 2.5
 - Transport eff x 2
 - E_c^{3/2} (from 90 to 210 neV) x 3.5

- Goal: 5000 UCN/cm³ in EDM cell.
- Lumi. upgrade at RCNP to 10 μA allows tests thru 2014.
- Longer running time at TRIUMF (8 months/yr vs few weeks)

TRIUMF Meson Hall

UCN Facility at TRIUMF

Spallation Target & UCN Source

janneson wuwininpeg.ed

UCN Source at TRIUMF

UCN beam line magnets

- Septum/bender magnets built by KEK
 - Lambertson design considered for septum
 - Sector design for bender (under construction this FY)

K. Tanaka, A. Miller

Ramsey Resonance

Neutron Counts

- π/2 pulse
- free precession time $\boldsymbol{\tau}$
- π/2 pulse
- For $\omega = g_n \mu_N = \frac{e g_n B}{2 m_p}$, min. UCN
- Vary ω and narrow "Ramsey fringes" are observed.
- Width of fringe $\sim 1/\tau$

jamieson@uwinnipeg.ca

EDM Method

Ramsey Resonance Curve 24000 ≈ 1/T 22000 20000 **Neutron Counts** 18000 16000 14000 12000 10000 Resonant freq. x = working points 29.7 29.9 30.0 29.8 30.1 Applied Frequency (Hz)

Sit at the steepest slope and watch for any change in neutron counts under E-field reversal.

$$d_n = \frac{\left(N_{1\uparrow\uparrow} - N_{2\uparrow\uparrow} - N_{1\uparrow\downarrow} + N_{2\uparrow\downarrow}\right)\hbar}{2\alpha ETN}$$

Ramsey Resonance Results

Nearing state-of-the-art in low-field NMR!

Successful demonstration of technique behind precision EDM measurements.
February, October 2011: B-field homogeneity and stability studies with UCN jamieson@uwinnipeg.ca

n-EDM Systematics

- magnetic field variations
- Ieakage currents
- geometric phase effect
 - false EDM arising from B-field inhomogeneity and E x v.

(co)magnetometry

false EDM (GP) effect

Xe-129 buffer-gas nuclear spin comagnetometer

- Masuda-san's idea: leak polarized Xe-129 into the EDM cell with the neutrons and watch spins precess.
- Xe-129 pressure must be large
 - Xe-Xe Collisions -> small MFP -> small GPE.
 - Ring-down signal picked up by SQUID.
- Xe-129 pressure must be small
 - Electrical breakdown at higher pressures.
 - UCN absorption by Xe-129.
- There is a range of pressures in mTorr range that seems to work!

Similar to how the Sussex-RAL-ILL (PSI) EDM experiment uses their Hg-199 comagnetometer.

Two polarized, UV photons in.

One NIR photon out. Modulated by Xe nuclear precession.

Leak in polarized Xe from SEOP source

Schedule and Goals

Phase	Goals	Year
RCNP	T ₂ to 130 s, HV	
	New source, improved UCN density	2011-12
	Horizontal EDM experiment, improvement of UCN density in EDM cell to 900 UCN/cm ³ , SC polarizer, precision Xe comagnetometry	2012-13
	In 20 days production running, $d_n < 1 \ge 10^{-26}$ e-cm	2013-14
TRIUMF	Commissioning and first experiment with same setup.	2015-16
	Further improvements to magnetic shielding, (co)magnetometry, EDM cell, detectors, $d_n < 1 \ge 10^{-27}$ e-cm	2016-17
	Improvements to cold moderator, magnetic shielding, beam current, targetry, remote handling, cryogenics, (co)magnetometry, $d_n < 1 \ge 10^{-28}$ e-cm	2018-

Complementarity

Project	H ₀ field	magnetometer	EDM cell	magnetic shielding
KEK / RCNP / TRIUMF	spherical coil	¹²⁹ Xe buffer gas co-magnetometer	<i>small</i> T = 300 K	finemet/ superconductor
Sussex / RAL / ILL	solenoid	n at $E = 0$ magnetometer	large T ~ 0.5 K	μ metal superconductor
SNS	cosθ coil	³ He co-magnetometer	large T ~ 0.5 K	μ metal superconductor
PSI	cosθ coil	Cs multi- Magnetometer Hg-199	large $T = 300 \text{ K}$	μ metal

UCN Summary

- Neutron EDM experiments are being prepared, ultimately to improve precision to the 10⁻²⁸ e-cm level.
- UCN sources are popping up all over the world, with vibrant fundamental physics programs: Neutron lifetime, Neutron Gravity levels experiment, Neutron beta-decay, nn oscillation search, neutron-ion interactions.
- UCN can also be used for material studies (not covered in today's talk)

Acknowlegements: Special thanks to J. Martin, and L. Lee from whom I have borrowed many of these slides.

Fin.

UCN Facilities

- Reactor sources:
 - ILL, Mainz, Munich, NCSU, PNPI
- Spallation sources:

- LANL, KEK-RCNP-TRIUMF, PSI, J-PARC

- And dedicated UCN experiments installed in Cold Neutron beamlines:
 - ILL, NIST, SNS

EDM's and Supersymmetry (SUSY)

Scale of EDM's for quarks in SUSY: s

$$d_q \sim \frac{\alpha}{\pi} \times \frac{m_q}{\Lambda_{SUSY}^2} \times \sin \theta_{CP}$$

from P. Harris, Sussex

- For "reasonable" values of new parameters: $d_q \sim 3 \times 10^{-24} e \cdot cm$
- According to neutron EDM measurements: $d_u < 2 \times 10^{-25} e \cdot cm$ $d_d < 5 \times 10^{-26} e \cdot cm$
- Unattractive solution ("SUSY CP problem"):
 - $\Lambda_{\rm SUSY}$ > 2 TeV and/or $\theta_{\rm CP}$ < 0.01

Kicker

- Redirect "1A" beam into UCN line on kHz timescale using existing TRIUMF beam structure.
- TRIUMF/CERN design
 - HV SS switches
 - Fast dipole magnet
- Magnet coil design completed summer 2011.

New ideas: Optical readout of Xe-129 spins

- Polarized two-photon transition ∆m=2 selection rule occurs for nuclear spin aligned (T. Chupp)
- Chupp: absorption, or index of refraction
- New idea: use superradiance (T. Momose)
- Level structure being characterized @UBC

What are Neutrons?

The atomic nucleus is made of protons & neutrons

- The neutron:
 - has no charge
 - contains quarks
 - carries spin and has a magnetic moment
- Free neutrons decay ($\tau = 885.7 \pm 0.8 \text{ s}$)
 - Neutron in nucleus is stable

Think of a spinning top

Think of a bar magnet

Why are Neutrons Important?

- They keep the nucleus together (without them, only H)
- Free neutrons were one of the first things present in the early universe. Their decay half-life is intimately related to the amount of (D, He, Li) in the universe.
- Important in many reactions going on in our sun (nuclear fusion), and in nuclear reactors (nuclear fission).
- We're made of them
- Neutrons are used to:
 - Study many Fundamental Physics questions
 - Probe the structure of materials

Basic Timeline for TRIUMF n-EDM

RCNP Phase (-2014)

– Goal d_n < 1 x 10⁻²⁶ e-cm

TRIUMF Phase (2015-)

- Goal $d_n < 1 \ge 10^{-27}$ e-cm by 2017.
- Improve to $d_n < 1 \ge 10^{-28} \text{ e-cm}$.

cable

42

Physics Experiments with UCN

neutron electric dipole moment

- neutron lifetime
- gravitational levels of UCN confined above a mirror
- beta-asymmetry measurements
- nn-oscillations
- free n target

Other Technical Progress at TRIUMF

- Target and Remote Handling
 - Target workshop with PSI experts at TRIUMF (Aug. 2011).
 - RCNP / TRIUMF / Acsion collaboration.
- Radiation Shielding conceptual design, cost
- Cryo Plant design specifications
- Project Management, Cost, Schedule, Human resources, Gantt charts, MOU's, etc.

Testing Universality in MSSM

Li, Profumo, Ramsey-Musolf JHEP 1008, 062 (2010)

- Open up to full MSSM parameter space.
- Scan parameters obeying neutron, TI, Hg limits.