Analytic Mass Reconstruction of $t\bar{t}$ Resonances in the Dilepton Channel

Michelle Boudreau, Bernd Stelzer, Michele Petteni

SFU

February 26 2012

Motivation

Beyond Standard Model: Search for new massive particles

• In search for resonances of the form: $pp \rightarrow X \rightarrow t\bar{t}$

Is the top quark special?

- $m_{top} \gg$ mass of other fundamental particles
- Many models predict new $X \rightarrow t\bar{t}$ with large branching ratios:
 - Examples:
 - \rightarrow KK Graviton
 - \rightarrow Z' Gauge Boson
 - \rightarrow Kaluza Klein excitation of the gluon (\sim 90% to $t\overline{t})$

Why? Extra dimension models predict heavier particles closer to TeV brane – stronger couplings to particles on this brane (ie top quark)

LHC and the ATLAS detector

- 27 km circumference underground tunnel near the France-Switzerland border
- pp collider at $E_{CM} = 7$ TeV (future up to $E_{CM} = 14$ TeV)
- 4 Experiments: ATLAS, CMS, LHCb, ALICE_____

- Inner Detector: measure tracks of charged particles
- Calorimeter: measures energy
- Muon Spectrometer: ID and \vec{p} measurement of muons
- Magnet System: bends charged particles (for \vec{p} measurement)

Michelle Boudreau (SFU)

The dilepton channel

Top Quark Decays almost exclusively: $t(\bar{t}) \rightarrow W^+(W^-)b(\bar{b})$ (BR = 0.99) Dilepton: both W bosons decay to leptons (e, μ, τ) and corresponding ν

Michelle Boudreau (SFU)

Mass Reconstruction

Neutrinos leave the detector undetected \rightarrow unable to directly reconstruct invariant mass of $t\bar{t}$

$$m_{kk} = m_{t\bar{t}} = \sqrt{(p_{l^+} + p_{l^-} + p_b + p_{\bar{b}} + p_{\bar{b}} + p_{\bar{b}})^2}; \quad p = (E, \vec{p})$$

Current observable in this channel:

Observable: $H_T + E_T^{miss}$

• $H_T = \sum p_T^{leptons} + \sum p_T^{quarks}; p_T =$ transverse momentum (in x-y plane)

Disadvantages:

- Broad distributions
- Scalar sum \rightarrow Loss of angular information

Michelle Boudreau (SFU)

Analytic Solution of $t\bar{t}$ dilepton equations

Try to reconstruct invariant mass of resonance by solving for the four vectors of the two neutrinos with constraints:

 \rightarrow Hope for better resolution in mass reconstruction than $H_T + E_T^{miss}$

• $E_x = p_{\nu_x} + p_{\bar{\nu}_x}$

•
$$E_y = p_{\nu_y} + p_{\bar{\nu}_y}$$

- $E_{\nu}^2 = p_{\nu_x}^2 + p_{\nu_y}^2 + p_{\nu_z}^2 \to p_{\nu}^2 = 0$
- $E_{\bar{\nu}}^2 = p_{\bar{\nu}_x}^2 + p_{\bar{\nu}_y}^2 + p_{\bar{\nu}_z}^2 \to p_{\bar{\nu}}^2 = 0$

•
$$m_{W^+}^2 = (p_{l^+} + p_{\nu})^2$$

• $m_{W^-}^2 = (p_{l^-} + p_{\bar{\nu}})^2$

•
$$m_t^2 = (p_{l^+} + p_{\nu} + p_b)^2$$

• $m_{\bar{t}}^2 = (p_{l^-} + p_{\bar{\nu}} + p_{\bar{b}})^2$

• Inputs: p_{ℓ} , p_b , E_y , E_x , m_{top} , m_W , m_b

Michelle Boudreau (SFU)

Solutions

Quartic equation gives at most 4 solution sets; complex solutions discarded.

• Allow mass of particle (top, W) to vary within the Breit Wigner width

- Obtain either 2 or 4 solutions
 - Need a way to extract correct solution
- Characterize using measurable quantities: ie. final state particles.
 - Multiple jets may pass object selection. Need to identify 2 jets and match to correct top decay
- Measurement resolution propagates through to neutrino 4-vector determination
- Need to compare the effect on background

Choosing the Correct Solution

- Choose correct solution whose invariant mass reconstructs closest to 1 TeV (or target mass of choice)
- Disadvantages:
 - Bias our background samples creating a fake bump about 1 TeV
 - Backgrounds change for different target masses

Choosing the correct solution

- Want a physics motivated discriminating quantity which leaves backgrounds unchanged for any target mass
- Compare neutrino solutions with consistency of the top decay
- Map out $\Delta R(top, \nu)$ relationship • $\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2}$
- Assign prob. of $\Delta R(t, \nu)$ for different p_{top} ranges

Higher Energies \rightarrow boosted tops

Choosing the Correct Solution

- Still, $\Delta R(t, \nu)$ alone not much of a discriminating variable since broad distribution for low momentum tops
- Use set of discriminating quantities to constrain:

Tried:

$$\left. \begin{array}{c} p_T^{\nu} / p_T^{\ell} \\ p_T^{\nu} / p_T^{b} \\ p_T^{\nu} / p_T^{top} \end{array} \right\} \\ \Delta R(\nu, \ell) \\ \Delta R(\nu, top) \\ \Delta R(\nu, b) \end{array}$$

Use these combined in plots below

No improvement in selection, unused

Performance - Signal - Detector Simulated

Leptons:

• well measured, not as much of an issue

Jets:

- poor measurement resolution
- no charge measurement → which jet comes from which top?
- \geq 2 jets available from object/event selections

Missing E_T

Important for analytic neutrino four vector reconstruction to select correct jet from top decay

Michelle Boudreau (SFU)

Do not measure top quark in the detector Use most correlated variable $\rightarrow b + lepton$ system Characterize quantities in bins of $p_{b+\ell}$

Backgrounds

Largest Background ightarrow Standard Model $t\bar{t}$

- Able to analytically determine neutrino 4-vectors
- Gain invariant mass!
- Work in Progress:
 - Run on ATLAS data
- $\bullet~\mbox{Bin content} \to \mbox{fit distributions to a function}$
- Include this as observable in future analysis

Backup Slides

Backgrounds

