Constraining the Variation of Fundamental Constants with Tritium Decay and the Cosmic Microwave Background

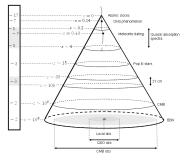
Anthony Fradette

supervised by Prof. Maxim Pospelov

University of Victoria

February 24th, 2012

Joining Multiple Ideas


Motivations from theories beyond the Standard Model

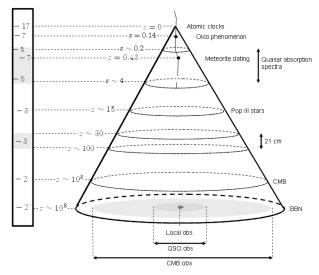
Varying Constants in Nuclear Physics

Cosmological Signature

Varying Constants

Started with Dirac with his *Large Numbers hypothesis* (based on numerology...) Now we have many theories : scalar-tensor theories of gravity, string theory...

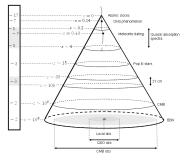
Taken from (Uzan, 2010).


Recent bounds coming from CMB anisotropy using WMAP-7yr data

$$-0.025 < \frac{\Delta lpha_{em}}{lpha_{em}} < -0.003$$
 $0.009 < \frac{\Delta m_e}{m_e} < 0.079$ at 1σ (Uzan, 2010)

They come from changing σ_T and ionization fraction.

- \rightarrow The values were straighforwardly changed in the equations.
- \rightarrow No new mechanisms considered.


Varying Constants

Varying Constants

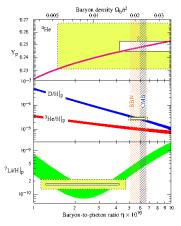
Started with Dirac with his *Large Numbers hypothesis* (based on numerology...) Now we have many theories : scalar-tensor theories of gravity, string theory...

Taken from (Uzan, 2010).

Recent bounds coming from CMB anisotropy using WMAP-7yr data

$$-0.025 < \frac{\Delta lpha_{em}}{lpha_{em}} < -0.003$$
 $0.009 < \frac{\Delta m_e}{m_e} < 0.079$ at 1σ (Uzan, 2010)

They come from changing σ_T and ionization fraction.


 \rightarrow The values were straighforwardly changed in the equations.

 \rightarrow NO new mechanisms considered.

Tritium Decays

BBN predicts atomic abundances very well. \Rightarrow Binding energies consistent with change $\sim 1\%$ We need a process with significant impact from a variation of constants.

In tritium decay, Q = 18.59 keV(recall $m_T \sim 2.8 \text{ GeV}$) \Rightarrow a small variation of constants can lead to significant change in Q-value.

Taken from PDG.

From quarks masses : $\Delta m_{T
ightarrow 3He} = \Delta m_{d
ightarrow u} \sim 3$ MeV $\Longrightarrow \Delta m_q \sim 1\% \sim Q$

From α : $BE_{em}/A \propto \alpha$, $BE_T \sim 8$ Mev $\implies \Delta \alpha \sim 1\% \sim Q$

Tritium Decays

Tritium decay

happens via beta decay

$$\Gamma_{\rm T\to ^3\,He}(Q) = \frac{(G_F V_{ud})^2}{2\pi^3} (g_v^2 + 3g_a^2) \int_{m_e}^{m_e+Q} {\rm d} EF(2,E) E \sqrt{E^2 - m_e^2} (Q + m_e - E)^2$$

Helium-3 decay

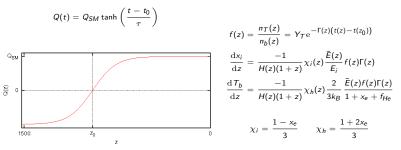
v,

³He

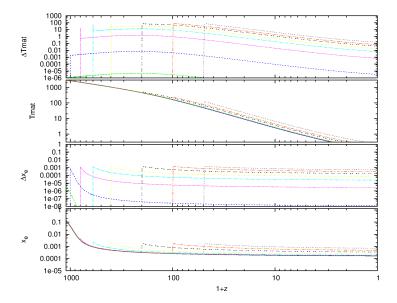
happens via electron capture

$$\Gamma_{\rm He \to T}(Q) = \frac{4}{\pi^2} G_F^2 V_{ud}^2 Q^2 m_e^3 \alpha^3 (g_v^2 + 3g_a^2)$$

Cosmological Context If Q < 0 after BBN \Rightarrow accumulation of tritium


When $Q \rightarrow Q_{SM} \Rightarrow T \rightarrow {}^{3}He$ ejecting energetic electrons and antineutrinos.

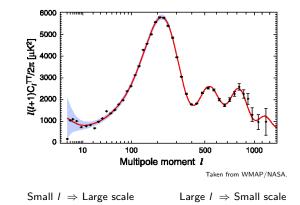
Ionization History


The Cosmic Microwave Background is a picture of the Universe when it became neutral.

Tritium decays after recombination \Rightarrow ejected electrons partially reionize the Universe.

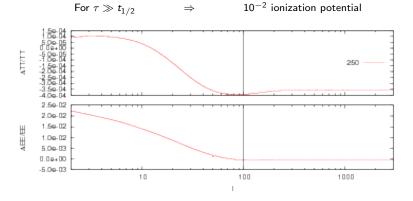
The Model

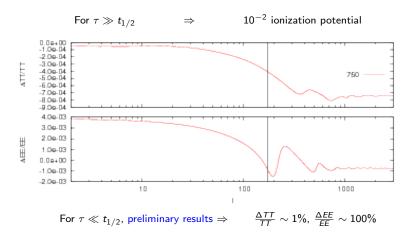
Ionization History



Anthony Fradette

Cosmic Microwave Background


The anisotropy power spectrum


Each z has a characteristic distance, the sound horizon $\Rightarrow I_z$

 $I \leq I_z$ casually disconnected at z

Cosmic Microwave Background

Cosmic Microwave Background

Acknowledgement

Funding

Hospitality

THANK YOU