Searching for Neutrinoless Double Beta Decay with EXO

Kevin Graham

WNPPC, Mont Tremblant February 25, 2012

Neutrinoless Double Beta Decay

$$\left[T_{0\nu}^{1/2}\right]^{-1} = G_{0\nu} \left|M_{0\nu}\right|^2 \left\langle m_{\beta\beta} \right\rangle^2$$

G = phase space factors (easy) |M| = nuclear matrix elements (hard) $m_{\beta\beta} = |\sum_{i} U_{ei}^2 m_i|$

T^{1/2}_{0v}= half-life (current limit >5.7x10²⁴yrs)

are neutrinos Majorana particles ? $\Delta L=2$ lepton number violation? neutrino mass scale neutrino mass hierarchy

EXO: Sensitivity

Double Beta Decay of ¹³⁶Xe

Summed electron energy in units of the kinematic endpoint (Q)

$$T_{1/2}^{0\nu}(y) \approx \sqrt{\frac{\mathbf{M} \cdot \mathbf{t}}{\mathbf{N}_{\mathbf{Bkg}} \cdot \mathbf{\Delta E}}}$$

- 1) Mitigate non- $\beta\beta$ backgrounds
- 2) Minimize $2\nu\beta\beta$ contamination
- 3) Large mass x exposure time

EXO Program

Measurement of ¹³⁶Xe $2\nu\beta\beta$ and search for $0\nu\beta\beta$

• EXO 200

- liquid xenon time projection chamber (scintillation and ionization)
- 200 kg of enriched xenon (~80%)
- demonstrate energy resolution/low bkgs/physics results

EXO Gas-phase

- prototype gas-phase TPC (scintillation and ionization)
- event reconstruction ($\sigma_E \sim 1\%$, tracking, dE/dx)

Barium Tag

- could eliminate all non- $\beta\beta$ backgrounds

<u>"Full EXO"</u>

- multi-tonne TPC...utilize 'best' technologies developed

Detector Cartoon for EXO

Detector Concept for EXO

Detector Concept for EXO

EXO-200

- liquid phase TPC holding 200 kg of enriched liquid xenon
- ionization collection (wires) + light collection (APDs)
- no barium tagging for this prototype but being developed

EXO-200 LXe TPC field cage & readout planes

EXO-200: $2\nu\beta\beta$ observation

KamLAND-Zen: $2\nu\beta\beta$ $T_{1/2} = (2.38 \pm 0.02 \text{ stat} \pm 0.14 \text{ sys}) \times 10^{21} \text{ yr}$

 $0\nu\beta\beta$ $T_{1/2} > 5.7 \text{ x } 10^{24} \text{ yr } 90\% \text{ CL}$ (300 < m_{$\beta\beta$} < 600) meV

XEP Gas-Phase Prototype TPC

Readout Schematic

- use CsI coated readout pads to detect scintillation UV photons
- ionization signal converted to UV via electroluminescence
- segment in x-y plane...digitize in time for z 'segmentation'
- total charge (photons) provides energy measurement

XEP Pressure Vessel (10 bar) at Carleton

- commission systems in 2 months
- initial detector testing with UV source
- commence TPC operations

- vacuum/gas systems being installed
- final TPC components being fabricated
- electronics and HV supplies ready

Electroluminescence Tests

$$dN_{\gamma} = 140(E/p-1)pdx$$

- two-channel detector
- ²⁴¹Am alpha source
- wavelength shift UV photons to optical

Sample Data Traces

- Data was aquired over the voltage range (0 8000) Volts
- 25000 35000 events were taken at each voltage increment.

Energy Resolution vs ΔV

Ba Tag - Ion Transport

- efficient Ba tag would eliminate all non $\beta\beta$ background
- in-situ tag looks challenging
- instead, transport ion to low-pressure region for ID
- 'commonly' carried out for radioactive ion transport

Ba ID Techniques

- Ba⁺ simple electronic structure
- excite with blue light and look for red

convert Ba⁺⁺ to Ba⁺ and then trap and identify spectroscopically

Summary

• EXO-200

- first measurement of $2\nu\beta\beta$ for ¹³⁶Xe
- $0\nu\beta\beta$ results coming soon
- Gas-phase XEP work
 - 0.8 % energy resolution @ 5.5 MeV achieved with EL
 - experience with single-channel CsI photocathode detecting EL photons
 - commission 10-bar TPC this spring
 - ~1 year to optimize and evaluate detector potential
 E resolution and tracking (background suppression)
- Build Complete Gas-phase barium tag
- Develop Large-Scale (multi-tonne) Detector

University of Alabama, Tuscaloosa AL, USA - D. Auty, M. Hughes, R. MacLellan, A. Piepke, K. Pushkin, M. Volk

University of Bern, Switzerland - M. Auger, D. Franco, G. Giroux, R. Gornea, M. Weber, J-L. Vuilleumier

California Institute of Technology, Pasadena CA, USA - P. Vogel

Carleton University, Ottawa ON, Canada - A. Coppens, M. Dunford, K. Graham, C. Hägemann, C. Hargrove, F. Leonard, C. Oullet, E. Rollin, D. Sinclair, V. Strickland

Colorado State University, Fort Collins CO, USA - C. Benitez-Medina, S. Cook, W. Fairbank, Jr., K. Hall, N. Kaufold, B. Mong, T. Walton

Indiana University, Bloomington IN, USA - L.J. Kaufman

University of California, Irvine, Irvine CA, USA - M. Moe

ITEP Moscow, Russia - D. Akimov, I. Alexandrov, V. Belov, A. Burenkov, M. Danilov, A. Dolgolenko, A. Karelin, A. Kovalenko, A. Kuchenkov, V. Stekhanov, O. Zeldovich

Laurentian University, Sudbury ON, Canada - E. Beauchamp, D. Chauhan, B. Cleveland, J. Farine, J. Johnson, U. Wichoski, M. Wilson

University of Maryland, College Park MD, USA - C. Davis, A. Dobi, C. Hall, S. Slutsky, Y-R. Yen

University of Massachusetts, Amherst MA, USA - J. Cook, T. Daniels, K. Kumar, P. Morgan, A. Pocar, J.D. Wright

University of Seoul, South Korea - D. Leonard

- Stanford Linear Accelerator Center (SLAC), Menlo Park CA, USA M. Breidenbach, R. Conley, R. Herbst, S. Herrin, J. Hodgson, A. Johnson, D. Mackay, A. Odian, C.Y. Prescott, P.C. Rowson, J.J. Russell, K. Skarpaas, M. Swift, A. Waite, M. Wittgen, J. Wodin, L. Yang
- Stanford University, Stanford CA, USA P.S. Barbeau, J. Davis, R. DeVoe, M.J. Dolinski, G. Gratta, M. Montero-Díez, A.R. Müller, R. Neilson, K. O'Sullivan, A. Rivas, A. Sabourov, D. Tosi, K. Twelker

Technical University of Munich, Garching, Germany - W. Feldmeier, P. Fierlinger, M. Marino

Extra Slides

EXO-200: Energy scale

- Calibrated single and multiple cluster peaks across energy region of interest, 511 to 2615 keV (uncertainty bands are systematic)
- Point-like depositions have large reconstructed energies due to induction effects
 - observed for pair-production events (similar to β and $\beta\beta$ decays)
 - reproduced in simulation
- Peak widths are also recorded, and their dependence on energy is parameterized

EXO-200: Radon

The ²¹⁴Bi decay rate is consistent with measurements from alpha-spectroscopy and the expected Rn background with no Rn trap.

EXO-200: Alpha spectroscopy

- Investigate alpha spectrum for scintillation signals from ²³⁸U
- Calibrate spectrum with alphas in Rn chain
- Can constrain contamination of ²³⁸U in bulk LXe by searching for 4.5 MeV alphas
 - < 0.3 counts per day in our fiducial volume

-The same limit applies to its daughter 234m Pa which β decays with a Q-value of 2195 keV, which cannot then explain our LXe bulk signal

Single Channel CsI Detector

Xenon Side

CsI test chamber concept: Xe side

Grids have pitch = 2.5mm, wire diameter = 0.25mm
Highest E_{EL} achieved without breakdown is 2700V/cm
Drift field set at ~70V/cm
Xe purified through SAES getter when filling

CsI Side

CsI evaporation:

- about 20 – 25min exposure to air before assembly

- thickness of coating $\sim 300 - 500$ nm

- CsI/readout is always heated at 60C for at least 12h after assembly or before new CH4 is added to the chamber

Main materials in the CH_4 :

- Stainless
- Copper
- UHV solder
- PEEK
- Teflon (insulate wires)

Grid has pitch = 2.5mm, wire diameter = 0.25mm

