

The FNAL LAr neutrino program

Roxanne Guenette Yale University

Feb. 24th 2012

Outline

- Overview of neutrino physics "big questions" and LAr neutrino detection technology
- Why neutrino physics is so "IN" right now / The 2011 events!
- LAr detectors at FNAL: ArgoNeuT, MicroBooNE and LBNE
- Conclusions

Workshop of Particles and Fields, 2006

Remaining questions

- Mass:
 - > What is the mass?
 - \succ Why is the mass so small?
 - > What is the mass hierarchy?
- Oscillation parameters:
 - ▶ Is the atmospheric mixing (θ_{23}) maximal?
 - $\succ \theta_{13}?$
 - ➤ Is there CP violation?
- Are neutrinos Dirac or Majorana?
- Are there sterile neutrinos?

NEUTRINO DETECTION

Neutrino Detection

- Neutrinos are not detected directly
- Neutrino interact through "Charged" or "Neutral" current
- Interaction products are detected

Charge Current (CC) Interactions Neutral Current (NC) Interactions

Neutrino Detection

• Traditionally, neutrino detectors used Cherenkov radiation or scintillation light

Neutrino Detection: A new technology

Liquid Argon Time Projection Chambers

LAr TPC

✓3D imaging

✓ High neutrino detection efficiency

✓ Excellent background rejection

✓ Good calorimetric reconstruction

Very recent discoveries in neutrino physics (2011)

The sterile neutrino hypothesis got some back ups

+ $\theta_{\rm \, 13}\,$ seems to be "big"

Neutrinos seem to be quite fast!

The LSND anomaly

- LSND: short-baseline accelerator, searching for $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$
- Would imply $\Delta m^2 \sim 1 eV^2$

t: The MiniBooNE low-energy excess

rved

in

MiniBooNE neutrino results

No excess in the LSND region (400MeV-1GeV)

Phys.Rev.Lett.102, 2009

New neutrino?

3 active + 1 sterile neutrino states

Future of sterile neutrino hypothesis

- MiniBooNE is currently taking more data in anti-neutrino mode
- Planck will tell N_{eff} with precision
- Reactor flux will stay uncertain
- Radioactive source experiments not sensitive enough (who wants MCi in their low radiation detectors!)
- Short-baseline experiments!

The haid to Born E Elector

- 170 tons total liquid argon
- 170 tons total liquid argon
- 86 to 86 atoms active volume (60)t fiducial)
- TPC dimensions: 2.5m x 2.3m x 10.4m
 TPC dimensions: 2.5m x 2.3m x 10.4m
 30 PMTs

• 30 PMTs

Field cage, anode and cathode planes

Cross section of TPC inside cryostat

given by Jim Kilmer afternoon plenary

PHYSICS GOALS

- Address the MiniBooNE low energy excess
- Measure low energy cross sections

MicroBooNE context: The MiniBooNE low-energy excess

- MiniBooNE experiment observed an excess (3 σ) of low-energy (200 MeV - 475 MeV) events in neutrino mode
- The excess events are electronlike: e⁻/ γ
- Efforts to understand the excess
- MiniBooNE cannot distinguish between electrons and photons
- Need of a new detector (new technology) to address the miniBooNE low-energy excess

Phys.Rev.Lett.102, 2009

MicroBooNE addressing the miniBooNE excess

- MicroBooNE ability to distinguish between electrons and photons will remove ν_μ induced single photon backgrounds
- MicroBooNE ν_e efficiency ~2x better than MiniBooNE
- MicroBooNE sensitivity at low
 Tuesan engines refificiency down to tens of MeV (compared to ~200 MeV for MiniBooNE)

Liquid Argon Test Facility

eroboone

Gro

A

Detailed status by Dixon Bogert,

- Ground breaking 1 month ago
- TPC fabrication has started

- TPC assembly this Summer
- Ready to take data 2013

ArgoNeuT

- Small LArTPC (175I)
- Ran successfully in NuMI beam in 2009-2010
- Demonstrated the principle of LArTPCs
- First physics results!

V_μ **CC-INCLUSIVE CROSS SECTIONS** *arXiv:1111.0103v1 [hep-ex] 1 Nov 2011*

First Measurements of Inclusive Muon Neutrino Charged Current Differential Cross Sections on Argon

C. Anderson,¹ M. Antonello,² B. Baller,³ T. Bolton,⁴ C. Bromberg,⁵ F. Cavanna,⁶ E. Lach,¹ J. Edmunds,⁵ A. Ereditato,⁷ S. Farooq,⁴ B. Fleming,¹ H. Greenlee,³ R. Guenette,¹ S. Haug,⁷ C. Laurens, ⁵ M. James,³ E. Klein, K. Lang,⁸ P. Laurens,⁵ S. Linden,¹ D. McKee,⁴ R. Mehdiyev,⁸ B. Pag, O. Jale, ara,² K. Partyka,¹ A. Patch,¹ G. Rameika,³ B. Rebel,³ B. Rossi,⁷ M. Soderberg,^{3,9} J. Spitz,¹ M. Szel,¹ M. Weber,⁷ T. Yang,³ and G. Zeller³

(The Argo al olls oration)
¹ Yale Mine rsity N Haven, CT 06520
"INFN - Lass tori i zionali del Gran Sasso, Assergi, Italy "Fe ni , ation ! Accelerator Laboratory, Batavia, IL 60510
Ka as State University, Manhattan, KS 66506
⁶ Universita dell'Aquila e INFN, L'Aquila, Italy
⁷ University of Bern, Bern, Switzerland ⁸ The University of Terres of Austin Austin TX 78719
⁹ Syracuse University, Syracuse, NY 13244

ArgoNeuT has performed the first ν_{μ} CC differential cross section measurements for scattering on argon. The results are consistent with the GENIE predictions from $0^{\circ} < \theta_{\mu} < 36^{\circ}$ and $0 < P_{\mu} < 25$ GeV/c. The results elucidate the behavior of the outgoing muon in ν_{μ} CC interactions, information useful for tuning neutrino event generators, reducing the systematics associated with a long baseline neutrino oscillation experiment's near-far comparison, and informing the theory of the neutrinonucleus interaction in general. In addition to importance in understanding neutrino scattering and relevance for neutrino oscillation, these measurements represent a significant step forward for LArTPC technology as they are among the first with such a device.

Beyond microBooNE: Addressing LSND/MiniBooNE excesses

- From 2013, MicroBooNE will take data to fulfill its physics goals
- But in parallel and in future, MicroBooNE could be used to search for MiniBooNE/LSND event excesses
- MicroBooNE II could be combined to a large LAr (larLAr) TPC to have a near/far configuration (different locations possible)

Sensitivities* of MicroBooNEII + LarLAr

* The studies here only consider a simple 2-neutrino model

News from θ_{13}

 $\theta_{13} = 0$ is now <u>excluded</u> at 3σ !!

Double Chooz on TV!

Long-Baseline Neutrino Experiment (LBNE)

LBNE Science goals

• Primary goal: Oscillation physics:

 $ightarrow \nu_{\mu} \rightarrow \nu_{e}$: θ_{13} precision measurement, CP violation, mass hierarchy

 $\gg \nu_{\mu} \rightarrow \nu_{\mu}$: θ_{23} and Δm_{31}^2 precision measurement

- Proton decay search
- Supernova burst
- Atmospheric neutrinos

LBNE (Near detector)

LBNE (Far Detector)

LAr detector (40 kt) at Homestake (1300km)

LBNE (Far detector)

- 2 LAr modules of 20kt
- 3.7m drift
- 224 CPAs and 168 APAs
- 5mm wire spacing

LBNE prototype: LAr1

• kton-scale full engineering prototype

Conclusions

Nuclei

The Earth

LBNE Sensitivity: θ_{13} , CP violation, mass hierarchy

LBNE Sensitivity: θ_{23} and Δm^2_{31}

Proton de Bay Se Sensitivity: Proton de Cay

Sterile Neutrinos: May not be so crazy after all

The Reactor anomaly

➢ Re-calculation of the fission spectrum

>Using > 8000 nuclei, > 10000 β branches

ightarrow Re-computed the e $ightarrow \nu$ spectrum branch by branch

>Applied new corrections (off-equilibrium, neutron lifetime,...)

Sterile Neutrinos: May not be so crazy after all Reactor Antineutrino Anomaly

The reactor anomaly

R=0.937+-0.027

Sterile Neutrinos: May be not so crazy after all

The Gallium anomaly

► Radioactive sources used for calibration (ν_e disappearance)

Cosmology

Cosmic Microwave Background (CMB)

A global picture? The theorist approach

- 3-neutrinos and CPT violation Murayama, Yanagida 01; Barenboim, Borissov, Lykken 02; Gonzalez-Garcia, Maltoni, TS 03
- 4-neutrinos and CPT violation Barger, Marfatia, Whisnant 03
- Exotic muon-decay Babu, Pakvasa 02
- CPT viol. quantum decoherence Barenboim, Mavromatos 04
- Lorentz violation Kostelecky et al., 04, 06; Gouvea, Grossman 06
- **Mass varying** ν Kaplan, Nelson, Weiner 04; Zurek 04; Barger, Marfatia, Whisnant 05
- ► shortcuts of sterile ν s in extra dim Paes, Pakvasa, Weiler 05
- decaying sterile neutrino Palomares-Riuz, Pascoli, TS 05; Gninenko 10
- 2 decaying sterile neutrinos with CPV
- energy dependent quantum decoherence Farzan, TS, Smirnov 07
- sterile neutrinos and new gauge boson Nelson, Walsh 07
- sterile ν with energy dep. mass or mixing TS 07
- **•** sterile ν with nonstandard interactions Akhmedov, TS 10

most of these proposals involve sterile neutrinos

Neutrino Oscillation

• Neutrinos are the only particles of the SM defined by their flavor eigenstates (ν $_{\rm e},$ ν $_{\mu},$ ν $_{\tau})$

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 3} & U_{\tau 3} \end{bmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

$$P_{\nu_{\alpha} \to \nu_{\beta}}(L, E) = \sin^2 2\theta \sin^2 \left(1.27 \frac{\Delta m^2 (eV^2) L(km)}{E(GeV)} \right)$$

Neutrino oscillation = neutrino mass!

$$P_{\nu_{\alpha} \to \nu_{\beta}}(L, E) = \sin^{2} 2\vartheta \, \sin^{2} \left(1.27 \, \frac{\Delta m^{2} [\mathrm{eV}] \, D[\mathrm{M}]}{E[\mathrm{MeV}]} \right)$$
$$= \sin^{2} 2\vartheta \, \sin^{2} \left(1.27 \, \frac{\Delta m^{2} [\mathrm{eV}^{2}] \, L[\mathrm{km}]}{E[\mathrm{GeV}]} \right) \,.$$
(7.74)

and the oscillation length as

(7.75)
$$L^{\rm osc} = 2.47 \frac{E \,[{\rm MeV}]}{\Delta m^2 \,[{\rm eV}^2]} \,\mathrm{m} = 2.47 \frac{E \,[{\rm GeV}]}{\Delta m^2 \,[{\rm eV}^2]} \,\mathrm{km} \,.$$

The behavior of the transition probability in eqn (7.70) for $\sin^2 2\vartheta = 1$ as a functhe dashed line in Fig. 7.2. For fixed values of the squared-mass difference Δm^2 distance L. The oscillation length in eqn (7.75) corresponds to the location of the [km/GeV] Δm^2 [eV²] = 2.47, where the phase in the cosine function in eqn (7.60 function in eqn (7.70) is equal to π . The transition $m^2(\omega)$ by $L, E = \sin^2 2\theta \sin^2 (1.27 - E(GeV))$ by small for L wine the energy rithmic scale of L.

From the absence of any phase in the two-neutrino effective mixing matrix in e

$$\begin{aligned} P_{\nu_{\alpha} \to \nu_{\beta}}(L,E) &= \sin^{2} 2\vartheta \, \sin^{2} \left(1.27 \, \frac{\Delta m^{2} [\mathrm{eV}^{2}] \, L[\mathrm{m}]}{E[\mathrm{MeV}]} \right) \\ &= \sin^{2} 2\vartheta \, \sin^{2} \left(1.27 \, \frac{\Delta m^{2} [\mathrm{eV}^{2}] \, L[\mathrm{km}]}{E[\mathrm{GeV}]} \right) \,. \end{aligned}$$

(7.74)

and the oscillation length as $\begin{pmatrix}
c_{13} & 0 & e^{i\delta}s_{13} \\
0 & c_{23} & s_{23} \\
0 & 0 & 1 & 0 \\
0 & 0 & -s_{23} & c_{23} & E [MeV] + e^{-i\delta}s_{13} & 0 \\
D_{0} = -s_{23} & c_{23} & E [MeV] + e^{-i\delta}s_{13} & 0 \\
\Delta m^2 [eV^2] & m = 2.47 & \frac{E_{13}GeV}{\Delta m^2 [eV^2]} & m = 2.47 & \frac{E_$

 $sin^{2}(2\theta_{23}) > 0.91$ $sin^{2}(2\theta_{12}) = 0.87 \pm 0.03$

(from long baseline (MINOS)) (from solar (SNO) + reactor (KamLAND)) The behavior of the transition probability in eqn (7.70) for $\sin^2 2\Phi = 1$ as a function of *L/E* $\sin^2(2\theta_{13}) < 0.15$ (from reactor experiment) the dashed line in Fig. 7.2. For fixed values of the squared-mass difference Δm^2 and of the distame²₁₆.=T(2.35cHl@tioh)l@n@th³ inVeqn (7.75) $\Delta m^2 e_{2} p_{2}(\pi d_{2} b_{2} d_{2} d_{2}$