The jet energy scale at ATLAS using Z+jet events

Jamie Horton^a, Michel Vetterli^{a,b}

^aSFU, ^bTRIUMF

February 24, 2012

Introduction

A quick reminder/lesson

The Large Hadron Collider (LHC)

27 km circumference storage ring collider 2010-2011 7 TeV centre of mass energy

A Toroidal LHC Apparatus (ATLAS)

orold Magnets Solenold Magnet SCT Tracker Pixel Detector TRT Tracker

LHC general purpose detector $44 \text{ m long} \times 25 \text{ m diameter}$

Jets are collimated streams of particles

 \rightarrow Produced by hadronization of quarks and gluons

Jets are the most abundantly produced physics object at the LHC

- \rightarrow Important as both signal and background
- \rightarrow Necessary to accurately determine jet energy scale (JES)

In-situ tag and probe methods used to determine JES TAG well measured object PROBE the recoiling system

Multiple variations being studied:

- γ +jet, with γ as tag
- Z+jet, with Z as tag
- dijet, central tag forward probe (calibrate different regions)
- multijet, low energy jets as tag, single high energy jet as probe

In this study Z+jet events are studied

Z+jet events used to determine response using Missing- E_t Projection Fraction (MPF) method

Uses:

- Imbalance in energy deposited in calorimeter (Missing- E_t or $\vec{E_T}$)
- Well measured object balancing the jet (Z decaying to e^+e^-)

Advantages of using this method include:

- largely independent from jet algorithm
- resistant to pile-up activity
- resistant to initial and final state radiation

- How does it work?
 - \rightarrow Look at simple case
- 3 pieces of information:
 - Balance at particle level $\vec{p}_T^Z + \vec{p}_T^{had} = \vec{0}$
 - Imbalance at detector level $R_Z \vec{p}_T^Z + R_{had} \vec{p}_T^{had} = \vec{E_T}$
 - Electron response well known (say $R_Z = 1$)

Together this gives

$$R_{had} = 1 + \frac{\vec{p}_T^Z \cdot \vec{x}_T}{|p_T^Z|^2}$$
, where $MPF = \frac{\vec{p}_T^Z \cdot \vec{x}_T}{|p_T^Z|^2}$

Extra activity may increase/decrease response event to event

Uncorrelated activity doesn't contribute on average

 \rightarrow Rules out pile-up

What about initial/final state radiation / the underlying event?

 \rightarrow Define a 'Missing transverse projection fraction' by

$$MTF = \frac{\left|\vec{p}_T^Z \times \vec{\mathcal{E}_T}\right|}{\left|p_T^Z\right|^2}$$

Looks at activity perpendicular to the Z+jet Should vary event by event but average to $0 \label{eq:constraint}$

MPF Method

How does it look? Using \approx 50 000 'good' Z+jet events (defined on next slide) from 2011 data:

Average value of \approx -0.002, no correlated source of MET perp. to jet

 Z selection:

- 2 electrons (with extra quality cuts to ensure well measured electrons)
- opposite charges
- combined invariant mass between 66 and 116 GeV

Jet selection:

- At least 1 jet
- Leading jet in p_T isolated from electrons
- Leading jet $\eta <$ 0.8 ($\theta <$ 42°)
- No secondary jets with $p_T > 0.3 p_T^Z$

Z and jet back to back ($\Delta(\phi)(Z, jet) > 2.9$)

Events selected, looks at MPF distributions in p_T bins

Gaussian distribution with a clear mean

The result when it is all put together:

High energy jet \rightarrow More $\pi^0 s \rightarrow$ Higher response

In-situ calibration dominated by $\gamma+{\rm jet}$

Z+jet used to calibrate at low energies as γ +jet gets prescaled away \rightarrow Another advantage: different mixture of quark and gluon jets

Jets initiated by gluons should be wider and have a lower response Seen when comparing $\gamma+{\rm jet}$ and dijet results

 \approx 5 % difference expected from previous studies

Should be possible to separate quark and gluon responses from $\gamma/$ Z+jet results

Separating Quark and Gluon Responses

Begin with Monte Carlo

How well does Monte Carlo model the response?

Jamie Horton (^aSFU, ^bTRIUMF)

Separating Quark and Gluon Responses

Select highest p_T parton above 5 GeV near jet to tag as quark or gluon

Not all jets are tagged

 \rightarrow Will this affect the results?

Separating Quark and Gluon Responses

Reconstruct Z response using these 'truth tagged' quark and gluon responses

Small differences caused by inefficiencies, not a large problem Work in progress (more to come)

Jamie Horton (^aSFU, ^bTRIUMF)

JES from Z+Jet