Vibrational Nuclear Structure	Experiment and Analysis	Preliminary Results	Conclusion
		00	

Reassessing the Vibrational Nuclear Structure of ¹¹²Cd

Drew Jamieson

University of Guelph, Department of Physics

February 2012

・ロト・日本・ヨト・ヨー うへぐ

University of Guelph, Department of Physics

Drew Jamieson

Vibrational Nuclear Structure	Experiment and Analysis	Preliminary Results
		00

Vibrational Nuclear Structure

Nuclear Vibrations in the Collective Model Vibrational Structure of the $^{112}{\rm Cd}$ Sources of Inconsistency in the Vibrational Interpretation

2 Experiment and Analysis

Maier-Leibnitz Laboratory and the Q3D ^{112}Cd spectrum from the \vec{d},p reaction DWBA Calculations and Spectroscopic Factors

Operation Preliminary Results

Transfer Angular Distributions DWBA Transfer Angular Distributions ADWA Reassignment and the Quadrupole-Octupole States

□ > < 部 > < E > < E > < E < の < 0</p>

University of Guelph, Department of Physics

Drew Jamieson

Reassessing the Vibrational Nuclear Structure of ¹¹²Cd

Vibrational	Nuclear	Structure

Preliminary Results

Conclusion

Nuclear Vibrations in the Collective Model

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

University of Guelph, Department of Physics

Reassessing the Vibrational Nuclear Structure of $^{112}\mathrm{Cd}$

Vibrational	Nuclear	Structure
•		

• The Nucleus is treated as a spherical liquid drop

University of Guelph, Department of Physics

Vibrational	Nuclear	Structure	
•			

- The Nucleus is treated as a spherical liquid drop
- Vibrational excitations occur on the nuclear surface:

$$R(t) = R_{\rm av} + \sum_{\lambda=0}^{\infty} \sum_{\mu=-\lambda}^{\lambda} a_{\lambda\mu}(t) Y_{\lambda\mu}(\theta, \phi)$$

University of Guelph, Department of Physics

Drew Jamieson

Vibration	al Nuclear	Structure	
•			

- The Nucleus is treated as a spherical liquid drop
- Vibrational excitations occur on the nuclear surface:

$$R(t) = R_{\rm av} + \sum_{\lambda=0}^{\infty} \sum_{\mu=-\lambda}^{\lambda} a_{\lambda\mu}(t) Y_{\lambda\mu}(\theta, \phi)$$

• The $\lambda=0$ mode is a monopole vibration, which is purely radial

University of Guelph, Department of Physics

Drew Jamieson

Vibrational	Nuclear	Structure	
•			

- The Nucleus is treated as a spherical liquid drop
- Vibrational excitations occur on the nuclear surface:

$$R(t) = R_{\rm av} + \sum_{\lambda=0}^{\infty} \sum_{\mu=-\lambda}^{\lambda} a_{\lambda\mu}(t) Y_{\lambda\mu}(\theta, \phi)$$

- The $\lambda=0$ mode is a monopole vibration, which is purely radial
- The $\lambda = 1$ mode is a dipole vibration, which corresponds to shifts in the nuclear centre of mass

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

University of Guelph, Department of Physics

Drew Jamieson

Vibrational Nuclear Structure	Experiment and Analysis	Preliminary Results	Conclusion
•		00	

Vibration in the ^{112}Cd

Quadrupole-Octupole Vibrational Spectrum $4\omega\hbar$ $3\omega\hbar$ $2\omega\hbar$ 2^{+} $\omega\hbar$ 0^{+} 0

Drew Jamieson

Reassessing the Vibrational Nuclear Structure of $^{112}\mathrm{Cd}$

University of Guelph, Department of Physics

200

E

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Vibrational Nuclear Structure	Experiment and Analysis	Preliminary Results	Conclusion
•		00	

Drew Jamieson

Reassessing the Vibrational Nuclear Structure of $^{112}\mathrm{Cd}$

< 2 > < 2 > University of Guelph, Department of Physics

< 🗇 ▶

200

Ξ

Vibrational Nuclear Structure	Experiment and Analysis	Preliminary Results	Conclusion
•		00	

Drew Jamieson

Reassessing the Vibrational Nuclear Structure of $^{112}\mathrm{Cd}$

< E > < E > University of Guelph, Department of Physics

< A

200

E

Vibrational Nuclear Structure	Experiment and Analysis	Preliminary Results	Conclusion
•		00	

Drew Jamieson

Reassessing the Vibrational Nuclear Structure of $^{112}\mathrm{Cd}$

프 > - - 프 > University of Guelph, Department of Physics

< A

200

E

Vibrational Nuclear Structure	Experiment and Analysis	Preliminary Results	Conclusion
•		00	

Quadrupole-Octupole Vibrational Spectrum								
$4\omega\hbar$		1-	2-	3-	4-	5-		
$3\omega\hbar$		0+	2+	3+	4+	6+		
$2\omega\hbar$			2+	4+				
$\omega\hbar$		2+						
0		_0+						

Drew Jamieson

Reassessing the Vibrational Nuclear Structure of $^{112}\mathrm{Cd}$

University of Guelph, Department of Physics

E DQC

<ロト <回ト < 注ト < 注ト

Vibrational Nuclear Structure	Experiment and Analysis	Preliminary Results	Conclusion
•		00	

(Quadrup	ole-Octi	upole V	ibratio	nal Sp	ectrum	S	Spectrum	of low-ly	ing state	es in ¹¹² (Cd
$4\omega\hbar$		_1	2-	3-	4-	5-		$1^{-}2507$	$\frac{2^{-2669}}{2^{-2669}}$	3^{-2416}	$\frac{4^{-} 2591}{-}$	$5^{-} 2373$
$3\omega\hbar$					_4+	6+	3 2005	$\underline{0^+ \ 1871}$	<u>2⁺ 2121</u>	<u>3⁺ 2066</u>	<u>4⁺ 2082</u>	<u>6⁺ 2168</u>
$2\omega\hbar$			2+	4+				$0^+ 1433$	$2^{+}1312$	<u>4⁺ 1416</u>		
$\omega\hbar$		2+						2^{+} 618				
0		_0+						<u>0+ 0</u>				

Drew Jamieson

Reassessing the Vibrational Nuclear Structure of $^{112}\mathrm{Cd}$

University of Guelph, Department of Physics

Vi	brat	ional	Ν	luc	lear	St	ruc	ture	

00

Sources of Inconsistency in the Vibrational Interpretation

 There is more to nuclear structure than the energy spacings, and spin-parity assignments of excited states

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

University of Guelph, Department of Physics

Sources of Inconsistency in the Vibrational Interpretation

- There is more to nuclear structure than the energy spacings, and spin-parity assignments of excited states
 - branching ratios
 - lifetimes
 - · composition of wave-functions

Sources of Inconsistency in the Vibrational Interpretation

- There is more to nuclear structure than the energy spacings, and spin-parity assignments of excited states
 - branching ratios
 - lifetimes
 - · composition of wave-functions
- Using the $^{111}{\rm Cd}(\vec{\rm d},p)^{112}{\rm Cd}$ reaction, single-particle component of states in $^{112}{\rm Cd}$ can be measured
 - populate states in $^{112}\mathrm{Cd}$ through single neutron transfer

Vibrational	Nuclear	Structure

•

Preliminary Results

Conclusion

Maier-Leibnitz Laboratory and the Q3D

 Polarized deuterons accelerated to 22 MeV with a tandem Van de Graaff accelerator

University of Guelph, Department of Physics

Reassessing the Vibrational Nuclear Structure of $^{112}\mathrm{Cd}$

Vibrational	Nuclear	Structure

Preliminary Results

Conclusion

Maier-Leibnitz Laboratory and the Q3D

- Polarized deuterons accelerated to 22 MeV with a tandem Van de Graaff accelerator
- 80% polarization was achieved

Drew Jamieson

University of Guelph, Department of Physics

Vibrational	Nuclear	Structure

Preliminary Results

Conclusion

Maier-Leibnitz Laboratory and the Q3D

- Polarized deuterons accelerated to 22 MeV with a tandem Van de Graaff accelerator
- 80% polarization was achieved
- Deuteron beam was incident on a 150 μ g/cm² target of ¹¹¹Cd

University of Guelph, Department of Physics

Drew Jamieson

Vibrational Nuclear Structure

C

Experiment and Analysis

.

Preliminary Results

Conclusion

Maier-Leibnitz Laboratory and the Q3D

- Polarized deuterons accelerated to 22 MeV with a tandem Van de Graaff accelerator
- 80% polarization was achieved
- Deuteron beam was incident on a 150 µg/cm² target of ¹¹¹Cd

• Outgoing protons detected with Q3D magnetic spectrometer

University of Guelph, Department of Physics

Drew Jamieson

Reassessing the Vibrational Nuclear Structure of ¹¹²Cd

Vibrational Nuclear Structure

Experiment and Analysis

.

Preliminary Results

Conclusion

Maier-Leibnitz Laboratory and the Q3D

- Polarized deuterons accelerated to 22 MeV with a tandem Van de Graaff accelerator
- 80% polarization was achieved
- Deuteron beam was incident on a 150 µg/cm² target of ¹¹¹Cd

- Outgoing protons detected with Q3D magnetic spectrometer
- Elastic scattering data and (\vec{d},p) transfer data were collected at angles between 10° and 60°

University of Guelph, Department of Physics

Drew Jamieson

¹¹²Cd Spectrum from the \vec{d} , p reaction

Low excitation energy from 0 keV to 2380 keV at 20° with beam polarization up

Drew Jamieson

Reassessing the Vibrational Nuclear Structure of $^{112}\mathrm{Cd}$

University of Guelph, Department of Physics

Preliminary Results

Conclusion

^{112}Cd Spectrum from the $\vec{d}\text{,p}$ reaction

High excitation energy from 2000 keV to 4300 keV at 40° with beam polarization up

Drew Jamieson

University of Guelph, Department of Physics

Vibrational	Nuclear	Structure

DWBA Calculations and Spectroscopic Factors

 Distorted-Wave Born Approximation calculations are performed and compared to the experimental data

$$U = U_{\rm bind} + U_{\rm int}$$

- Interactions with nuclear volume are given by a Wood-Saxon potential
- Surface-dominated interactions are given by the derivative of a Wood-Saxon potential

$$\begin{split} U_{\rm v} &= V_r \frac{1}{1 - \exp(\frac{r - R_r}{a_r})} + i W_{\rm v} \frac{1}{1 - \exp(\frac{r - R_i}{a_i})} \\ U_s &= i 4 a_i W_s \frac{\mathrm{d}}{\mathrm{dr}} \left(\frac{1}{1 - \exp(\frac{r - R_i}{a_i})} \right) \\ U_{\rm so} &= V_{\rm so} \frac{\lambda_\pi^2}{r_{\rm so}} \frac{\mathrm{d}}{\mathrm{dr}} \left(\frac{1}{1 - \exp(\frac{r - R_{\rm so}}{a_{\rm so}})} \right) \vec{l} \cdot \vec{s} \end{split}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − つへぐ

University of Guelph, Department of Physics

Drew Jamieson

Vibrational	Nuclear	Structure

Preliminary Results 000

 A_y

Transfer Angular Distributions DWBA

University of Guelph, Department of Physics

590

Drew Jamieson

Vibrational	Nuclear	Structure

Preliminary Results

Conclusion

Transfer Angular Distributions ADWA

- There is another approximation scheme available for $(\vec{\mathrm{d}},\,p)$ reactions

- ロ ト 4 昂 ト 4 王 ト 4 王 - うへぐ

University of Guelph, Department of Physics

Reassessing the Vibrational Nuclear Structure of $\frac{^{112}\mathrm{Cd}}{}$

Transfer Angular Distributions ADWA

- There is another approximation scheme available for $(\vec{\mathrm{d}},\,p)$ reactions
- The adiabatic approximation has the form of an optical-model calculation

University of Guelph, Department of Physics

Transfer Angular Distributions ADWA

- There is another approximation scheme available for $(\vec{\mathrm{d}},\,p)$ reactions
- The adiabatic approximation has the form of an optical-model calculation
- The optical model potential for the adiabatic calculation is the sum of a proton and neutron potential, evaluated at half the deuteron energy

Vibrational	Nuclear	Structure	

Preliminary Results ŏ•

Transfer Angular Distributions ADWA

Drew Jamieson

Reassessing the Vibrational Nuclear Structure of $^{112}\mathrm{Cd}$

University of Guelph, Department of Physics

Vibrational Nuclear Structure	Experiment and Analysis	Preliminary Results	Conclusion
		00	
		•	

• The 2373 keV, 5⁻ state previously assigned to the quadrupole-octupole quintuplet shows strong $1h_{\frac{11}{2}}$ characteristics

University of Guelph, Department of Physics

Drew Jamieson

Reassessing the Vibrational Nuclear Structure of ¹¹²Cd

Vibrational Nuclear Structure	Experiment and Analysis	Preliminary Results	Conclusio
		00	
		•	

- The 2373 keV, 5⁻ state previously assigned to the quadrupole-octupole quintuplet shows strong $1h_{\frac{11}{2}}$ characteristics
- The 2817 keV 6 $^-$ state also shows strong $1h_{\frac{11}{2}}$ characteristics

University of Guelph, Department of Physics

Drew Jamieson

Vibrational Nuclear Structure	Experiment and Analysis	Preliminary Results	Conclusio
		00	
		•	

- The 2373 keV, 5⁻ state previously assigned to the quadrupole-octupole quintuplet shows strong $1h_{\frac{11}{2}}$ characteristics
- The 2817 keV 6 $^-$ state also shows strong $1h_{\frac{11}{2}}$ characteristics
- both of these 5⁻ and 6⁻ states are strongly populated in this single neutron transfer reactions

University of Guelph, Department of Physics

Vibrational Nuclear Structure	Experiment and Analysis	Preliminary Results	Conclus
		00	
		•	

- The 2373 keV, 5⁻ state previously assigned to the quadrupole-octupole quintuplet shows strong $1h_{\frac{11}{2}}$ characteristics
- The 2817 keV 6 $^-$ state also shows strong $1h_{\frac{11}{2}}$ characteristics
- both of these 5⁻ and 6⁻ states are strongly populated in this single neutron transfer reactions
- this data suggests the wavefunctions of these two states are dominated by a $3s_{\frac{1}{2}}\otimes 1h_{\frac{11}{2}}$ configuration

University of Guelph, Department of Physics

Drew Jamieson

Vibrational Nuclear Structure	Experiment and Analysis	Preliminary Results	Conclusion
		00	

Summary

- Born approximation, with global OMPs does not reproduce the angular distributions and analyzing powers of the $^{111}{\rm Cd}(\vec{d},p)^{112}{\rm Cd}$ reaction well
- Adiabatic approximation gives improved reproduction of the data, compared with DWBA
- A systematic comparison of spectroscopic factors obtained from AWDA and DWBA calculations will be made
- A strong population of the 5⁻ state previously assigned to the quadrupole-octupole quintuplet demonstrates a large single-particle component in the wavefunction, which is at odds with the assignment of this state within the vibrational model.
- Once spectroscopic strengths are obtained for each populated state, a reinterpretation of the vibrational spectrum of ¹¹²Cd will need to be made on the basis of the single particle components of the observed states

University of Guelph, Department of Physics

Drew Jamieson

Reassessing the Vibrational Nuclear Structure of ¹¹²Cd

Vibrational	Nuclear	Structure

Preliminary Results o oo Conclusion

Acknowledgements

<u>Advisor</u>: P.E. Garrett

Collaborators:

- Guelph
- G.A. Demand
- P. Finlay
- K.L. Green
- K.G. Leach
- A.A. Phillips
- C.S. Sumithrarachchi
- C.E. Svensson
- J. Wong

TRIUMF G.C. Ball S. Triambak

<u>MLL-LMU</u> R. Hertenberger H.-F. Wirth R. Krücken T. Faestermann

Maier-Leibnitz-Laboratorium für Kern- und Teilchenphysik der Ludwig-Maximikians-Universität München und der Technischen Universität München

< □ > < □ > < □ > < □ > < □ >

University of Guelph, Department of Physics

Drew Jamieson

/ibrational Nuclear Structure	Experiment and Analysis	Preliminary Results	Conclusion
C			
C		00	

Deuteron Elastic Scattering on ¹¹¹Cd

- Deuteron global optical model parameter sets (OMPs) reproduce the ${}^{111}Cd(\vec{d},\vec{d'}){}^{111}Cd$ angular distribution of elastic cross-sections and analyzing powers
- The OMPs are used in distorted-wave Born approximation (DWBA) calculations with the DWUCK4 code
- The experimental elastic cross-sections are scaled to the DWBA calculation for a determination of the target thickness, which is crucial for obtaining correct angular distributions
- DWBA calculations performed using the DWUCK4 code for elastic scattering that reproduced the data best were from Bojowald *et al.* (1988) [2]

University of Guelph, Department of Physics

Drew Jamieson

Reassessing the Vibrational Nuclear Structure of ¹¹²Cd

	Vil	brati	ional	Nu	clear	Stru	lcture	
--	-----	-------	-------	----	-------	------	--------	--

Experiment	and	Analysis

2

Preliminary Result

Conclusion

Ex (KeV)	S_{lj} ADWA	S_{lj} DWBA	%-diff
0	0.216	0.181	17.6
618	0.0478	0.0319	39.9
1224	0.0361	0.0399	-10.0
1312	0.000137	0.0004	-98.0
1416	0.00108	0.00121	-11.4
1433	0.0535	0.0464	14.2
1469	0.00981	0.00888	10.0
1871	0.0703	0.0742	-5.4
2005	0.00339	0.00523	-42.7
2065	0.000146	0.000324	-75.7
2082	0.00896	0.00846	5.7
2122	0.0136	0.0141	-3.6
2156	0.00908	0.00929	-2.3
2231	0.00144	0.00469	-106.0
2301	0.15	0.14	6.9
2373	0.17	0.146	15.2
2817	0.341	0.268	24.0

Drew Jamieson

・ロト・西ト・ヨト・ヨー うへぐ

University of Guelph, Department of Physics