Outline	${\sf LaBr}_3({\sf Ce})$ and the 8 π	Goal	Signal Optimization	Compton Suppression	Latest Results	Summary and Outlook

Characterization of $LaBr_3(Ce)$ Detectors for Picosecond (10⁻¹²s) Lifetime Measurements

Julian Michetti-Wilson

Physics Dept. University of Guelph

WNPPC

Outline •	LaBr ₃ (Ce) and the 8π οοοοοοοοοο	Goal O	Signal Optimization	Compton Suppression	Latest Results 000	Summary and Outlook
Out	line					

- LaBr₃(Ce) Detectors and the 8π
- 2 The project goal
- O Direct time optimization by signal processing
- Indirect time optimization by Compton suppression
- Summary and outlook

\wedge	Para					
•	000000000	0	00000000000	0000	000	00
Outline	LaBr $_3(Ce)$ and the 8π	Goal	Signal Optimization	Compton Suppression	Latest Results	Summary and Outlook

Outline

• LaBr₃(Ce) Detectors and the 8π

- 2 The project goal
- O Direct time optimization by signal processing
- Indirect time optimization by Compton suppression
- Summary and outlook

Outline •	LaBr ₃ (Ce) and the 8π οοοοοοοοοο	Goal O	Signal Optimization	Compton Suppression	Latest Results 000	Summary and Outlook
Out	line					

- LaBr₃(Ce) Detectors and the 8π
- The project goal
- O Direct time optimization by signal processing
- Indirect time optimization by Compton suppression
- Summary and outlook

Outline •	LaBr ₃ (Ce) and the 8π οοοοοοοοοο	Goal O	Signal Optimization	Compton Suppression	Latest Results 000	Summary and Outlook
Out	line					

- LaBr₃(Ce) Detectors and the 8π
- 2 The project goal
- O Direct time optimization by signal processing
- Indirect time optimization by Compton suppression
- Summary and outlook

Outline •	LaBr $_3$ (Ce) and the 8π	Goal O	Signal Optimization	Compton Suppression	Latest Results 000	Summary and Outlook
Out	line					

- LaBr₃(Ce) Detectors and the 8π
- 2 The project goal
- O Direct time optimization by signal processing
- Indirect time optimization by Compton suppression
- Summary and outlook

Outline •	LaBr ₃ (Ce) and the 8π οοοοοοοοοο	Goal O	Signal Optimization	Compton Suppression	Latest Results 000	Summary and Outlook
Out	line					

- LaBr₃(Ce) Detectors and the 8π
- 2 The project goal
- O Direct time optimization by signal processing
- Indirect time optimization by Compton suppression
- Summary and outlook

The	0_	0	000000000			
Outline 0	LaBr3(Ce) and the 8π ●000000000	Goal O	Signal Optimization	Compton Suppression	Latest Results 000	Summary and Outlook

- 8π is an array of different detectors used for accurate nuclear lifetime measurements
- Located at TRIUMF in Vancouver
- These measurements provide tests of the standard model

Figure 1: The 8π Array - Open

Outline 0	LaBr ₃ (Ce) and the 8π	Goal O	Signal Optimization	Compton Suppression	Latest Results 000	Summary and Outlook
The	8π					

- 8π is an array of different detectors used for accurate nuclear lifetime measurements
- Located at TRIUMF in Vancouver
- These measurements provide tests of the standard model

Figure 2: The 8π Array - Open

- Discovered in 2001
- 4f-5d electron excitation
- Stokes shift of 0.53 eV prevents reabsorbtion
- Emission on order of 3-4 eV 'Bright' Scintillator

LaBr₃(Ce) Detectors and the 8π

- Good energy resolution and timing resolution of ≈ 250 pico-seconds!
- Installed in the 8π replacing the BaF fast-timing detectors

LaBr₃(Ce) Detectors and the 8π

- Good energy resolution and timing resolution of ≈ 250 pico-seconds!
- Installed in the 8π replacing the BaF fast-timing detectors

 Outline
 LaBr₃(Ce) and the 8π Goal
 Signal Optimization
 Compton Suppression
 Latest Results
 Summary and Outlook

 0
 0000000000
 0000000000
 0000
 0000
 0000
 000
 000
 000

 La Day
 (Core)
 0
 Deste calculation
 Exception
 Deste calculation
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

$LaBr_3(Ce)$ vs BaF Detector Energy Resolution

Figure 3: BaF vs LaBr₃(Ce) ⁶⁰Co Energy Spectra

 Outline
 LaBr3(Ce) and the 8π
 Goal
 Signal Optimization
 Compton Suppression
 Latest Results
 Summary and Outlook

 0
 000000000
 0
 0000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

- Many types of radioactive decay emit multiple gamma rays
- ⁶⁰Co for example mainly emits 2 gamma rays within a picosecond of eachother

 Outline
 LaBr3(Ce) and the 8π
 Goal
 Signal Optimization
 Compton Suppression
 Latest Results
 Summary and Outlook

 0
 000000000
 0
 000
 000
 00
 00

- Many types of radioactive decay emit multiple gamma rays
- ⁶⁰Co for example mainly emits 2 gamma rays within a picosecond of eachother

 Outline
 LaBr3(Ce) and the 8π
 Goal
 Signal Optimization
 Compton Suppression
 Latest Results
 Summary and Outlook

 0
 000000000
 0
 0000
 000
 000
 000

- Many types of radioactive decay emit multiple gamma rays
- ⁶⁰Co for example mainly emits 2 gamma rays within a picosecond of eachother

 Outline
 LaBr₃(Ce) and the 8π
 Goal
 Signal Optimization
 Compton Suppression
 Latest Results
 Summary and Outlook

 0
 0000000000
 0
 0000
 0000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000<

- Many types of radioactive decay emit multiple gamma rays
- ⁶⁰Co for example mainly emits 2 gamma rays within a picosecond of eachother
- When both are detected in the 8π array one can insert a delay in one of the detectors to measure the time between detections

 Outline
 LaBr₃(Ce) and the 8π
 Goal
 Signal Optimization
 Compton Suppression
 Latest Results
 Summary and Outlook

 0
 000000000
 0
 0000
 0000
 000
 000
 000

- Many types of radioactive decay emit multiple gamma rays
- ⁶⁰Co for example mainly emits 2 gamma rays within a picosecond of eachother
- When both are detected in the 8π array one can insert a delay in one of the detectors to measure the time between detections

- The goal of my project is to set up these LaBr detectors with optimal timing resolution
- First step is to process the detector signal as accurately as possible

- The goal of my project is to set up these LaBr detectors with optimal timing resolution
- First step is to process the detector signal as accurately as possible
- Second step is to further increase accuracy by suppression of cross-detector scattering

- The goal of my project is to set up these LaBr detectors with optimal timing resolution
- First step is to process the detector signal as accurately as possible
- Second step is to further increase accuracy by suppression of cross-detector scattering

- The goal of my project is to set up these LaBr detectors with optimal timing resolution
- First step is to process the detector signal as accurately as possible
- Second step is to further increase accuracy by suppression of cross-detector scattering

 Outline
 LaBr₃(Ce) and the 8π Goal
 Signal Optimization
 Compton Suppression
 Latest Results
 Summary and Outlook

 0
 0000000000
 0
 0000
 000
 000
 00
 00
 00

Constant Fraction Discriminator

Figure 4: CFD Module

J. Michetti-Wilson

Figure 5: CFD Process

LaBr₃(Ce) Characterization

 Outline
 LaBr₃(Ce) and the 8π Goal
 Signal Optimization
 Compton Suppression
 Latest Results
 Summary and Outlook

 0
 000000000
 0
 0000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000<

Constant Fraction Discriminator

Figure 6: CFD Module

Figure 7: CFD Process

J. Michetti-Wilson

 Outline
 LaBr₃(Ce) and the 8π
 Goal
 Signal Optimization
 Compton Suppression
 Latest Results
 Summary and Outlook

 0
 000000000
 000000000
 0000
 0000
 000
 000

Constant Fraction Discriminator

Figure 8: CFD Module

Figure 9: CFD Process

J. Michetti-Wilson

 Outline
 LaBr₃(Ce) and the 8π Goal
 Signal Optimization
 Compton Suppression
 Latest Results
 Summary and Outlook

 0
 000000000
 0
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000</

Constant Fraction Discriminator

Figure 10: CFD Module

J. Michetti-Wilson

Figure 11: CFD Process

LaBr₃(Ce) Characterization

 Outline
 LaBr₃(Ce) and the 8π
 Goal
 Signal Optimization
 Compton Suppression
 Latest Results
 Summary and Outlook

 0
 0000000000
 0
 0000
 0000
 0000
 000
 000

Constant Fraction Discriminator

Figure 12: CFD Module

J. Michetti-Wilson

Figure 13: CFD Process

 Outline
 LaBr₃(Ce) and the 8π
 Goal
 Signal Optimization
 Compton Suppression
 Latest Results
 Summary and Outlook

 0
 0000000000
 0000000000
 0000
 0000
 0000
 000

Detector Signal Optimization

• Using a Constant-Fraction Discriminator (CFD) we determine singal timing

Figure 14: CFD Superimposes Delayed-Inverted Signal

J. Michetti-Wilson

LaBr₃(Ce) Characterization

 Outline
 LaBr₃(Ce) and the 8π
 Goal
 Signal Optimization
 Compton Suppression
 Latest Results
 Summary and Outlook

 0
 0000000000
 0
 0000
 0000
 000
 000
 000

Detector Signal Optimization

- Using a Constant-Fraction Discriminator (CFD) we determine singal timing
- We must adjust settings: Zero-Crossing; Delay-Length

Figure 14: CFD Superimposes Delayed-Inverted Signal

 Outline
 LaBr₃ (Ce) and the 8π Goal
 Signal Optimization
 Compton Suppression
 Latest Results
 Summary and Outlook

 0
 000000000
 0
 0000
 000
 000
 00
 00

Detector Signal Optimization

Figure 15: Well adjusted delay

Figure 16: Too long a delay

Figure 17: Too short a delay

- Make use of a high-precision plastic timing scintillator
- Timing uncertainty is negligible compared to LaBr

Collecting and fitting $^{60}\mathrm{Co}$ spectra with different CFD delay lengths allows us to determine which setting is optimal

Figure 18: Poor-resolution Setting

Figure 19: Good-resolution Setting

Collecting and fitting $^{60}\mathrm{Co}$ spectra with different CFD delay lengths allows us to determine which setting is optimal

Figure 20: Poor-resolution Setting

Figure 21: Good-resolution Setting

 Outline
 LaBr₃(Ce) and the 8π
 Goal
 Signal Optimization
 Compton Suppression
 Latest Results
 Summary and Outlook

 0
 000000000
 0
 0000
 000
 000
 00
 00

Optimization Results

Figure 22: Comparison of CFD Delay Settings for Timing Optimization

 Outline
 LaBr3(Ce) and the 8π
 Goal
 Signal Optimization
 Compton Suppression
 Latest Results
 Summary and Outlook

 0
 0000000000
 0
 0000
 000
 000
 000

Cross-Detector Scattering

Figure 23: Possible Scattering Problem

J.	Mic	hetti	-Wil	son
----	-----	-------	------	-----

Compton Suppression to Increase Time Resolution

- Peak of interest often lies on a Compton background
- Compton scattered gamma rays might be detrimental to timing resolution due to their increased time-of-flight
- This effect has not yet been investigated in the 8π

Figure 24: Europium Energy Peaks of Interest

How to Test the Effect of Suppression

Signal Optimization

- We take advantage of the the 152 Eu state with a half-life of \approx 1.4 ns
- By fitting the time signal we can make measurements of this already known lifetime
- This was measured with varying amounts of suppression material

Latest Results

Summary and Outlook

Compton Suppression

0000

Figure 25: Scattering Setup

Outline

Outline LaBr3(Ce) and the 8π occorrection Goal Signal Optimization occorrection Compton Suppression occorrection Latest Results occorrection Summary and Outlook occorrection Suppressed and NonSuppressed Timing Spectra

What we have so far... (one of many acquisitions)

Figure 26: Compton Suppressed ¹⁵²Eu Time Spectra

Figure 27: Gated ¹⁵²Eu Time Spectra

(•	000000000	0	00000000000	0000	•00	00
	1 -+-	ct Doculto					

- Recently finished creating a program which performs a 3-parameter χ 2 regression to fit time-resolution data to a gaussian
- Successfully fit ⁶⁰Co data

 Outline
 LaBr₃(Ce) and the 8π
 Goal
 Signal Optimization
 Compton Suppression
 Latest Results
 Summary and Outlook

 0
 0000000000
 0
 0000
 000
 000
 00
 00

Compton Suppression - Worse Results

- Compton suppressed and non-suppressed Europium data was examined
- It appears on first look, however, to conflict with our assumption about the effect of shielding...
- To understand this effect better more experimental investigation may be required

- The LaBr₃(Ce) signal processing has been optimized and the fit data looks good
 - Suppression vs NonSuppression data has been collected over a period of 2 months at TRIUMF
 - Further investigation into the queer effect Compton suppression has had will likely take place in March at TRIUMF
 - The Europium time-data will be fit to a skew-gaussian in order to extract a half-life
 - This same analysis will also be done for a ²⁰⁷Bi dataset which was acquired last fall
 - With this we hope to test the limits of the LaBr detectors, understand the effect of cross-detector scattering and improve the abilities of the 8π

for your attention and to all those who contributed

L. Bianco G. Demand P. Garrett C. Svensson Nuclear Group

D. Cross A. Garnsworthy