Design and Construction Components of Scintillating Fibre Tracking Detectors Jason Sharpe

Outline

- 1. What is a Scintillating Fibre Tracking Detector (SFT)?
- Common design components of SFTs that should be the same/similar between SFTs (ie. Do most toothbrushes need brushes to... brush?)
- 3. Do SF need coating to reduce cross-talk?
 - 1. Experiment -> Results -> Conclusion
- 4. What couplant/fibre-end finish combination allow best light transmission between SF's and light guides?
 - 1. Experiment -> Results -> Conclusion

An SFT – More Detail

- SFTs are made up of planes of SFs.
- Planes at angles to each other

WELCOM

Common Design Characteristics

- In SFTs, SF are touching
- Scintillation light is released isotropically
- Photons may leak into adjacent SFs
- =CROSS-TALK!

- Can coating the SFs reduce cross-talk? Or is there a measurable effect?
 - = Experiment #1 !!!

Coating to Reduce Cross-talk Experiment 1 - Purpose

- Purpose To determine if coating SFs reduces adjacent fibre cross-talk.
- Hypothesis Coating fibres will decrease cross-talk

e⁻,γ

Coating to Reduce Cross-talk Experiment 1 - SETUP

Coating to Reduce Cross-talk Experiment 1 – SETUP Pictures

Coating to Reduce Cross-talk Experiment 1 – Results

S

Ц С

Coating to Reduce Cross-talk Experiment 1 – Results

S

Ц С

Coating to Reduce Cross-talk Experiment 1 – Results

Coating to Reduce Cross-talk Experiment 1 – Conclusion

Cross-talk

- <u>Conclusive</u> Painting fibres decreases crosstalk by (2.10 ± 0.85)%
- SFs should be painted to reduce cross-talk

Common Design Characteristics

- 1. SFs are expensive 1mx1mm dia. BCF-20 = 18\$
 - With 15 000 SFs = \$270 000
- Using SF outside the active area can allow unwanted noise from background rad, and scattering of main beam.
 - Light guides route the light from SF to PMT
 - To reduce costs (they are about ¹/₂ the price of SFs)
- How do you connect a SF to a light guide?
 - Optical epoxy, optical grease, silicon connectors, fuse them together, or... air
 - No current empirical evidence exists that incorporates <u>fibre</u> <u>finish</u> with <u>couplants</u>

Couplant/Finish Combo. to increase light transmission - Experiment 2 – Purpose

- Purpose Determine what optical couplant + fibre-end finish maximize light transmission at the SF/light guide junction.
- Hypothesis The combination of smooth fibre-end finishes and optical epoxy should maximize light transmission

Couplant/Finish Combo. to increase light transmission - Experiment 2 – SETUP

- 1. LED Pulses with 200 ns gate at 10kHz (Blue light)
- 2. Photons travel down SFs and Control light guides
- 3. At Connection block photons are transmitted through an optical couplant and fibre-ends
- 4. Photons arrive at PMT
- 5. Signal travels to electronics

Couplant/Finish Combo. to increase light transmission - Experiment 2 – SETUP Pics

LOYOLA RESIDEN

Couplant/Finish Combo. to increase light transmission - Experiment 2 – Qualitative Analysis

Polished

200µm

 Signal A = SE1

 EHT = 20.00 kV
 WD = 17 mm
 Photo No. = 17

Signal A = SE1 Date :13 Feb 2012 Photo No. = 1764 Time :14:46

Factory Finish

200µm

EHT = 20.00 kV WD = 16 mm

Signal A = SE1 Date :13 Feb 2012 Photo No. = 1768 Time :14:54

Couplant/Finish Combo. to increase light transmission - Experiment 2 – Results

Couplant/Finish Combo. to increase light transmission - Experiment 2 – Results

Couplant/Finish Combo. to increase light transmission - Experiment 2 - Conclusion

- Grease/factory finish and grease/polish maximize light transmission.
- These results are inconclusive at this preliminary stage, more tests will be done.
 - Optical cement/polish
 - Air/polish
 - And a new technique of annealing fibres using a 300°C stream of hot air to melt the ends of fibres

Preliminary Conclusion

- Preliminary results from the two experiments:
 - Cross-talk: Painting SFs reduces the crosstalk between adjacent SFs
 - Best Fibre-end/Couplant Combo:
 - Grease/Factory Finish and;
 - Grease/Polish
- Read my Paper in NIM A once I get the final results in!

Future Work

- Design/Build an SFT for Hall A experiments at JLab.
 - Implement results that were found with Crosstalk and light transmission
 - For: "Large Acceptance Proton Form Factor Ratio Measurements at 13 to 15 (GeV/c)² Using Recoil Polarization Method"

Thank you! Questions?

