Laser Spectroscopy at TRIUMF

Olivier Shelbaya

Collinear Laser Spectroscopy

lons from cyclotron continuously enter RFQ

Cutaway of High Vacuum beamline

Hyperfine Structure

 Λ

Spectral lines break into smaller components, due to:

- → e⁻ B-field coupling to Nuclear magnetic moment
- Nuclear electric Quadrupole moment

Fine Structure: meV Hyperfine structure: µeV

$$E_{hfs} = \frac{K}{2} \mathbf{A} - \frac{3K(K+1) - 4I(I+1)J(J+1)}{8I(2I-1)J(2J-1)} \mathbf{B}$$

$$K = F(F+1) - I(I+1) - J(J+1)$$

$$\mathbf{A} = \frac{\mu_I}{IJ} B_e(0)$$

$$\mathbf{B} = e Q_s \left\langle \frac{\partial^2 V}{\partial z^2} \right\rangle$$

Spectroscopic quadrupole moment

Doppler Broadening of Spectral Lines

Isotope Shifts (δv)

IS can be lined to variation of nuclear charge radius:

$$\delta v = \delta v_{MS} + F(Z) \, \delta < r^2 >$$
 Measure line shift, get information on change in radius!

F(Z): factor that takes into account e⁻ and nuclear wavefunction overlap

Gameplan

Produce rare isotopes

The Rubidium Isotope Chain

Motivation

- Presence of vibrational deformation on neutron deficient end
- Proton drip line (⁷⁴Rb) shape coexistence
- Dramatic deformation in heavy Rb's (N=59,60)

74-78 Rb at TRIUMF late 2010

Results

	All A,B coefficients in MHz					
А		δv ^{A-78}	A(S _{1/2})	A(P _{3/2})	B(P _{3/2})	X ²
74	0	+99(10)	-	-	-	0.93
75	3/2	-41.1(17)	+719.6(10)	+17.8(01)	+63(27)	1.18
76	1	-24.3(12)	-693(08)	-17.15(01)	+32(07)	1.08
78m	4	+69.4(21)	+1185.1(05)	+29.3(01)	+83.1(22)	0.76
78	0	0	-	-	-	0.83

Variations in $\delta \langle \ r^2 \ \rangle$ for $^{76\text{-}98}\text{Rb}$

- 76Rb: 10x reduction in uncertainty for A,B coeff.
- 75Rb: First nuclear spin assignment (I = 3/2)
- 74Rb: First measurement of isotope shift & Charge radius:

<r²>⁷⁴ = 4.18(10) fm²

Heavy Rb at TRIUMF, late 2011

Obtained spectra for ⁹²Rb (10 minute observations)

92 has I = 0 (nuclear spin)

- No hyperfine structure
- Yields of ~ 10^9 /s

Conclusion

- Laser spectroscopy probes shape & structure of nuclei
- Extended observations of light Rb's
- Plan to extend on neutron rich end study dramatic shape change
- Obtained ⁹²Rb spectra late 2011 First step
- Late April plans to measure HFS for Rubidium 98-99 and 100
- Observations will reveal whether increase in δ<r²> is maintained beyond 97,98 Rb

Laser spectroscopy Collaboration

Dr. Matt Pearson

Dr. Ernesto Mané

Dr. John Behr

Prof. John Crawford Dr. Fritz Buchinger Olivier Shelbaya

TRIUMF

Prof. Jon Billowes Annika Voss

