WNPPC 2012The 49th Winter Nuclear and Particle Physics Conference

Electromagnetic Transition Rate Measurements Far from Stability With Radioactive Beams

Philip J. Voss Simon Fraser UniversityFriday, February 24th ²⁰¹²

The Nuclear Physics Landscape

Select Major Questions in Nuclear Physics

- \blacksquare How does an increasing proton-neutron asymmetry impact the evolution of nuclear structure?
- \blacksquare Can the properties of light atomic nuclei be described entirely from first principles, or an *ab initio*, approach?

Select Major Questions in Nuclear Physics

- \blacksquare What mechanisms drive the changes in nuclear shape for radioactive mediummass N=Z nuclei? How do they impact the proton-rich nucleosynthesis?
- \blacksquare What are the best approximations and approaches for developing an accurate theoretical description of heavy ($A > 20$) nuclei?

Measuring electromagnetic observables is ideal as they:

- Impart ^a negligible perturbation on the nuclear system governed by the strong force.
- \blacksquare Provide ^a variety of model-independent probes of nuclear structure.

Studies at the extreme limits of nuclear existence require:

- \blacksquare Radioactive beam facilities capable of delivering intense and pure beams of nuclear species.
- ٠ Highly efficient detector arrays for gamma-ray spectroscopy.
- ٠ ^A variety of charged particle detector setups for reaction residue andcharged particle tagging to decrease background.

Electromagnetic transition rate measurements lend insight into the evolutionof nuclear structure and provide ^a sensitive test of theoretical models.

Lifetime Measurements

Electromagnetic transition rate measurements lend insight into the evolutionof nuclear structure and provide ^a sensitive test of theoretical models.

Lifetime Measurements

 λ

$$
\tau(E2; 2_1^+ \to 0_{gs}^+) = \frac{1}{\lambda(E2; 2_1^+ \to 0_{gs}^+)}
$$

(E2; 2_1^+ \to 0_{gs}^+) \propto E(2_1^+)^5 B(E2; 2_1^+ \to 0_{gs}^+)

$$
B(E2; I_i \to I_f) = \frac{1}{2J_i + 1} \langle I_f || E2 || I_i \rangle^2
$$

Electromagnetic transition rate measurements lend insight into the evolutionof nuclear structure and provide ^a sensitive test of theoretical models.

Coulomb Excitation

Electromagnetic transition rate measurements lend insight into the evolutionof nuclear structure and provide ^a sensitive test of theoretical models.

Coulomb Excitation

Anomalous Neutron-Rich Carbon Isotopes?

S. Raman et al., Nuclear Data Tables, **36** 1 (1987). H.J. Ong et al., PRC, **⁷⁸** 014308 (2008).

M. Weideking et al., PRL, **¹⁰⁰** 152501 (2008). N. Imai et al., PRL **92**, 062501 (2004).

The Recoil Distance Method

¹²C(¹⁹N, ¹⁸C+γ**)X Experimental Spectra**

S800 particle identification and 18 C gated gamma-ray energy spectra at three target-degrader distances.

Best Fit Lifetime Results

Results of Neutron-Rich Carbon Lifetime Campaign

S. Raman et al., Nuclear Data Tables, **36** 1 (1987). H.J. Ong et al., PRC, **⁷⁸** 014308 (2008). N. Imai et al., PRL **92**, 062501 (2004).

M. Wiedeking et al., PRL, **¹⁰⁰** 152501 (2008). M. Petri et al., PRL **107** 102501 (2011) and PRC sub.

Ab Initio **No-Core Shell Model Calculations**

C. Forssén *et al.*, PRC, **arXiv:1110.0634v1** [nucl-th] (2011).

The convergence of NCSM calculations
employing, the impertance.truncation employing the importance-truncationscheme is shown to the left.

NSCL Lifetime Group and 18C Collaborators

Excited State Transition Rate Measurements in ${}^{18}C$

P. Voss, 1,2,* T. Baugher, 1,2 D. Bazin, 1,2 R. M. Clark, 3 H. L. Crawford, 4,2 A. Dewald, 5 P. Fallon, 3 A. Gade, 1,2 G. F. Grinyer,² H. Iwasaki,^{1,2} A. O. Macchiavelli,³ S. McDaniel,^{1,2} D. Miller,^{1,2} M. Petri,³ A. Ratkiewicz,^{1,2} W. Rother,⁵ K. Starosta,⁶ K. A. Walsh,^{1,2} D. Weisshaar,² C. Forssén,⁷ R. Roth,⁸ and P. Navrátil⁹ ¹Department of Physics and Astronomy, Michigan State University, East Lansing, MI, 48824 2 National Superconducting Cyclotron Laboratory, East Lansing, MI, 48824 3 Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 ⁴Department of Chemistry, Michigan State University, East Lansing, MI, 48824 ⁵Institut für Kernphysik, Universität zu Köln, 50937 Köln, Germany ⁶Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada ⁷ Department of Fundamental Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden ⁸Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany TRIUMF, Vancouver, BC, V6T 2A3, Canada (Dated: February 20, 2012)

The Importance of 3N Forces in *Ab Initio* **Calculations**

Transition Rate Studies at TRIUMF

Coulomb Excitation Measurements

- \blacksquare Highly-segmented silicon (BAMBINO) for scattered particle detection.
- \blacksquare High-efficiency HPGe (TIGRESS) for de-excitation photon detection.

TRIUMF ISAC Gamma-Ray Escape Suppressed Spectrometer

TIGRESS is an array of ¹⁶ high-purity germanium clover detectors with 32-fold segmentation per clover for enhanced position resolution.

The array is fully instrumented with fast digital electronics and reconfigurable BGO suppressors tomeet ^a variety of experimental needs.

¹⁹⁴Pt(¹⁰Be, ¹⁰Be*)¹⁹⁴Pt* Experimental Equipment

Photos adapted from Nico Orce

¹⁹⁴Pt(¹⁰Be, ¹⁰Be*)¹⁹⁴Pt* Gamma-Ray Energy Spectra

E.A. McCutchan et al., PRL 103, 192501 (2009). E.K. Warburton et al., Phys. Rev. **148**, 1072 (1966).T.R. Fisher et al., Phys. Rev. **176**, 1130 (1968).

Result in excellent agreement with *2N* NCSM and *3N* GFMC *ab initio* calculations.

The 10Be Collaboration

Measurement of the Sign of the Spectroscopic Quadrupole Moment for the 2^+_1 State in 10 Be: A Confining Test of Ab Initio Calculations

J. N. Orce,^{1,2} M. K. Djongolov,¹ T. E. Drake,³ P. Navrátil,^{1,4} H. Al Falou,^{1,5} G. C. Ball,¹ R. Churchman,¹ D. S. Cross, ⁶ P. Finlay, ⁷ C. Forssén, ⁸ A. B. Garnsworthy, ¹ P. E. Garrett, ⁷ G. Hackman,¹ A. B. Haves,⁹ R. Kshetri,^{1,6} J. Lassen,¹ K. G. Leach,⁷ R. Li,¹ J. Meissner,¹ C. J. Pearson,¹ E. T. Rand,⁷ F. Sarazin,¹⁰ S. K. L. Sjue,¹ M. A. Stoyer,⁴ C. S. Sumithrarachchi,⁷ C. E. Svensson,⁷ E. R. Tardiff,¹ A. Teigelhoefer,¹ S. Triambak,¹ S. J. Williams,¹ J. Wong,⁷ and C. Y. Wu⁴ ¹TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada ²Department of Physics, University of the Western Cape, P/B X17, Bellville, ZA-7535 South Africa ³Department of Physics, University of Toronto, Toronto ON, M5S 1A7, Canada ⁴Lawrence Livermore National Laboratory, Livermore, CA 94550, USA ⁵ Astronomy and Physics Department, Saint Mary's University, Halifax, NS B3H 3C3, Canada ⁶Department of Chemistry, Simon Fraser University, Burnaby BC, V5A 1S6, Canada ⁷Department of Physics, University of Guelph, Guelph ON, N1G 2W1, Canada ⁸ Fundamental Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden 9 Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA ¹⁰Physics Department, Colorado School of Mines, Golden, CO 80401, USA (Dated: February 4, 2012)

The TIGRESS Integrated Plunger

- \blacksquare TIP delivers ^a new experimental program at TRIUMF using accelerated beams from ISAC-II and variety of reaction mechanisms for studies of exotic nuclei.
- \blacksquare TIP offers unmatched flexibility for nuclear structure studies via lifetime andCoulomb excitation measurements.
- \blacksquare **Recoiling nuclei travel at about 10** μ **m/ps (compared to 100** μ **m/ps at NSCL).** Lifetime lower limit depends upon achieving the smallest target-stopper gap.

TIP Auxiliary Detector Systems

^A suite of charged particle detectors has been developed for TIP, including ^a silicon S3 detector, ^a silicon PIN diode forward wall, and CsI crystals.

CsI(Tl) Ball for Charged-Particle Tagging

- \blacksquare ■ Commissioning ⁴⁰Ca(³⁶Ar, 2α)⁶⁸Se lifetime measurement will use fusion-evaporation reactions.
- \blacksquare Radiation-hard 3π CsI(Tl) scintillator array necessary for reaction channel selection.

⁴⁰Ca(³⁶Ar, 2α)⁶⁸Se CsI Pulse Shape Analysis

Summary

- \blacksquare Electromagnetic transition rate measurements with radioactive beams play an important role in our understanding of the nucleus and provide stringent benchmark tests of nuclear models.
- \blacksquare Precision Coulomb excitation measurements with TIGRESS and BAMBINOtogether with lifetime measurements have demonstrated the capability of directly accessing the shape of nuclear charge distributions.
- \blacksquare The addition of TIP and its suite of charged particle detectors opens the door for precision lifetime measurements with radioactive beams at the ISAC-II facility at TRIUMF.

The TIP Collaboration

K. Starosta, C. Andreoiu, R. Austin, G. Ball, P. Garrett, G. Hackman, C. Svensson, P. Voss, R. Ashley, A. Chester, D. Cross, J. Pore

The TIGRESS Collaboration

R. Henderson and the TRIUMF Detectors/Engineering Group

The SFU Science Machine and Electronics Shop

Funded by NSERC award SAPIN/371656-2010 and SAPEQ/390539-2010

Thank you!Merci!

Lifetime Measurements at TRIUMF

Recoiling nuclei travel at about ¹⁰ ^µm/ps (compared to ¹⁰⁰ ^µm/ps at NSCL). Lifetime lower limit depends upon achieving the smallest target-stopper gap.

 \blacksquare Foil flatness and uniformity.

- \blacksquare Parallel-alignment and distance stability.
- \blacksquare Sensitive gap control mechanism.

¹⁰Be + ¹⁹⁴Pt: Experimental Details

Laser-ionized 10 Be $^{2+}$ radioactive beam properties:

- Accelerated to final energy of 41 MeV
- **IDED 11** Intensity on target of approximately $10⁷$ ions per second
- Beam on target for approximately 100 hours

¹⁹⁴Pt target with thickness of 3 mg/cm²

TIGRESS array properties:

- \blacksquare Eight clovers were used, full Compton suppression
- 9.0% gamma-ray efficiency at the 328 keV excitation energy of ¹⁹⁴Pt
- \blacksquare 2.5% gamma-ray efficiency at the 3368 keV excitation energy of ¹⁰Be

¹⁹⁴Pt(¹⁰Be, ¹⁰Be*)¹⁹⁴Pt* Particle Energy Spectrum

¹⁰Be elastic and inelastic scattering peaks detected by BAMBINO.

Measured gamma-ray yields well reproduced with GOSIA.

¹⁰Be Quadrupole Moment Calculations

Philip J. Voss

WNPPC 2012

The TIGRESS Integrated Plunger

CsI(Tl) Ball: Pulse Shape Analysis

Fusion-Evaporation Reactions with TIP

Philip J. VossWNPPC 2012

 \blacksquare

 \blacksquare

array.

Importance of ⁶⁸Se

- [1] M. Hasegawa, et. al., Phys. Lett. B 656, 51 (2007).
- [2] F. II. Khudair, Y. S. Li, G. L. Long, Phys. Rev. C 75 054316 (2007).
- [3] T. A. War et. al., Eur. Phys. J. A 22, 13 (2004).
- [4] N. Hinohara et. al., Prog. Theor. Phys. (Kyoto) 119, 59 (2008).
- [5] A. Petrovici et. al., Nucl. Phys. A 710, 246 (2002).

メロトメ 伊 トメ 君 トメ 君 トッ 君 いく

Reduced Collectivity in Light Stable Sn

New reported *B(E2)* values in stable even-even tin isotopes (red) present ^a clear discrepancy with previous measurements and significant revisions to data normalized by these results (black squares).

Reduced Collectivity in Light Stable Sn

TIP will address the experimental discrepancies in $^{112\text{-}118}$ Sn using the complimentary approaches of sub-barrier Coulomb excitation and lifetime studies.

- \blacksquare For proper kinematic reconstruction and event-by-event Doppler correctionto obtain the Coulex cross section and thus the *B(E2)* value.
- \blacksquare To separate contaminant Coulomb excitation within the heavy DSAM stopping material via light target recoil detection in coincidence with gamma rays.

Doppler Shift Attenuation Method

Adapted from Kris Starosta

18C Observed Transitions and Level Scheme

Geant4/ROOT Simulations

Experimental Geometry

Incident Secondary Beam Properties

Knockout Reaction Kinematics

Gamma-Ray Decay Processes

Detector Response

Feeding Corrections

Constraint of Systematic Errors

One-Proton Knockout Reaction Simulations

Comparison of simulated (blue) and experimental (red) ¹⁸^C reactionresidue parameters behind the degrader from the 1p knockout of ¹⁹N.

18C: Investigation of Systematic Errors

A two-variable χ^2 hypersurface fit to the data constrained the 18 C targetdegrader reaction ratio (R_{α}) . An additional constraint was extractedfrom the 3.0 mm distance data.

Lifetime scans using the upper andlower limits for R_{σ} yielded the systematic error.

$$
R_{\sigma} = 2.15^{+0.74}_{-0.34} \rightarrow 22.4^{+2.2}_{-1.1}(syst)ps
$$

Uncertainties in the ¹⁸^C momentum distribution also introduced ^a symmetric systematic error of 1.1 ps. All other sources of error were found to be negligible.

$$
\tau = 22.4 \pm 0.9(stat)^{+2.5}_{-1.6}(syst)ps
$$

The Segmented Germanium Array

 $\mathsf{E}_{\mathsf{res}}$ ≈ 2.2% after Doppler corrections ^ε ≈ 2% at 1.33 MeV

Digital Data Acquisition System

All ⁴⁹⁵ channels of Plunger SeGA were instrumented with DDAS, consisting of ⁴ Compact PCI/PXI crates and³⁹ Pixie-16 DGF Modules from XIA.

Individual waveforms of gamma-ray events were captured and stored on ^a ¹⁰ TB storage server, opening the door for pulse shape analysis investigations.

Energy and timing information were extracted and merged with the S800 analog data to fully reconstruct the event , providing near real-time analysis.

DDAS Pulse Shape Analysis

K. Starosta et al*.*, NIM A **610**, 700 (2009).