WNPPC 2012 The 49th Winter Nuclear and Particle Physics Conference

Electromagnetic Transition Rate Measurements Far from Stability With Radioactive Beams

Philip J. Voss Simon Fraser University Friday, February 24th 2012

The Nuclear Physics Landscape

Select Major Questions in Nuclear Physics

- How does an increasing proton-neutron asymmetry impact the evolution of nuclear structure?
- Can the properties of light atomic nuclei be described entirely from first principles, or an *ab initio*, approach?

Philip J. Voss WNPPC 2012

SFU

Select Major Questions in Nuclear Physics

- What mechanisms drive the changes in nuclear shape for radioactive mediummass N=Z nuclei? How do they impact the proton-rich nucleosynthesis?
- What are the best approximations and approaches for developing an accurate theoretical description of heavy (A > 20) nuclei?

Measuring electromagnetic observables is ideal as they:

- Impart a negligible perturbation on the nuclear system governed by the strong force.
- Provide a variety of model-independent probes of nuclear structure.

Studies at the extreme limits of nuclear existence require:

- Radioactive beam facilities capable of delivering intense and pure beams of nuclear species.
- Highly efficient detector arrays for gamma-ray spectroscopy.
- A variety of charged particle detector setups for reaction residue and charged particle tagging to decrease background.

Electromagnetic transition rate measurements lend insight into the evolution of nuclear structure and provide a sensitive test of theoretical models.

Lifetime Measurements

Electromagnetic transition rate measurements lend insight into the evolution of nuclear structure and provide a sensitive test of theoretical models.

Lifetime Measurements

-

 λ

$$\tau(E2; 2_1^+ \to 0_{gs}^+) = \frac{1}{\lambda(E2; 2_1^+ \to 0_{gs}^+)}$$
$$(E2; 2_1^+ \to 0_{gs}^+) \propto E(2_1^+)^5 B(E2; 2_1^+ \to 0_{gs}^+)$$
$$B(E2; I_i \to I_f) = \frac{1}{2J_i + 1} \langle I_f ||E2||I_i\rangle^2$$

Electromagnetic transition rate measurements lend insight into the evolution of nuclear structure and provide a sensitive test of theoretical models.

Coulomb Excitation

Electromagnetic transition rate measurements lend insight into the evolution of nuclear structure and provide a sensitive test of theoretical models.

Coulomb Excitation

Anomalous Neutron-Rich Carbon Isotopes?

S. Raman et al., Nuclear Data Tables, **36** 1 (1987). H.J. Ong et al., PRC, **78** 014308 (2008). M. Weideking et al., PRL, **100** 152501 (2008). N. Imai et al., PRL **92**, 062501 (2004).

Philip J. Voss WNPPC 2012

SFU

Philip J. Voss WNPPC 2012

SFU

The Recoil Distance Method

¹²C(¹⁹N, ¹⁸C+γ)X Experimental Spectra

S800 particle identification and ¹⁸C gated gamma-ray energy spectra at three target-degrader distances.

Philip J. Voss WNPPC 2012

SFU

Best Fit Lifetime Results

Results of Neutron-Rich Carbon Lifetime Campaign

The **present result** reduces the existing fractional uncertainty by a factor of two.

$$B(E2) = 3.64^{+0.46}_{-0.48} \text{ e}^2 \text{fm}^4$$

$$B(E2)_{lit} = 4.3 \pm 1.2 \text{ e}^2 \text{fm}^4$$

S. Raman et al., Nuclear Data Tables, **36** 1 (1987). H.J. Ong et al., PRC, **78** 014308 (2008). N. Imai et al., PRL **92**, 062501 (2004).

Philip J. Voss WNPPC 2012 M. Wiedeking et al., PRL, **100** 152501 (2008).M. Petri et al., PRL **107** 102501 (2011) and PRC sub.

Ab Initio No-Core Shell Model Calculations

C. Forssén et al., PRC, arXiv:1110.0634v1 [nucl-th] (2011).

Nucleus	Observable	Experiment	CDB2K
$^{18}\mathrm{C}$	$E(2_{1}^{+})$	1.585(19)	1.8(1)
$^{18}\mathrm{C}$	$B(E2; 2_1^+ \to 0_1^+)$	$3.64_{-0.48}^{+0.46}$	4.2(4)
$^{18}\mathrm{C}$	$Q(2_{1}^{+})$		+3.8(4)

The convergence of NCSM calculations employing the importance-truncation scheme is shown to the left.

NSCL Lifetime Group and ¹⁸C Collaborators

Excited State Transition Rate Measurements in ¹⁸C

P. Voss,^{1,2,*} T. Baugher,^{1,2} D. Bazin,^{1,2} R. M. Clark,³ H. L. Crawford,^{4,2} A. Dewald,⁵ P. Fallon,³ A. Gade,^{1,2} G. F. Grinyer,² H. Iwasaki,^{1,2} A. O. Macchiavelli,³ S. McDaniel,^{1,2} D. Miller,^{1,2} M. Petri,³ A. Ratkiewicz,^{1,2} W. Rother,⁵ K. Starosta,⁶ K. A. Walsh,^{1,2} D. Weisshaar,² C. Forssén,⁷ R. Roth,⁸ and P. Navrátil⁹
¹Department of Physics and Astronomy, Michigan State University, East Lansing, MI, 48824
²National Superconducting Cyclotron Laboratory, East Lansing, MI, 48824
³Lawrence Berkeley National Laboratory, Berkeley, CA, 94720
⁴Department of Chemistry, Michigan State University, East Lansing, MI, 48824
⁵Institut für Kernphysik, Universität zu Köln, 50937 Köln, Germany
⁶Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
⁷Department of Fundamental Physics, Chalmers Universität Darmstadt, 64289 Darmstadt, Germany
⁹TRIUMF, Vancouver, BC, V6T 2A3, Canada
(Dated: February 20, 2012)

The Importance of 3N Forces in Ab Initio Calculations

Transition Rate Studies at TRIUMF

Coulomb Excitation Measurements

- Highly-segmented silicon (BAMBINO) for scattered particle detection.
- High-efficiency HPGe (TIGRESS) for de-excitation photon detection.

TRIUMF ISAC Gamma-Ray Escape Suppressed Spectrometer

TIGRESS is an array of 16 high-purity germanium clover detectors with 32-fold segmentation per clover for enhanced position resolution.

The array is fully instrumented with fast digital electronics and reconfigurable BGO suppressors to meet a variety of experimental needs.

¹⁹⁴Pt(¹⁰Be, ¹⁰Be^{*})¹⁹⁴Pt^{*} Experimental Equipment

Photos adapted from Nico Orce

¹⁹⁴Pt(¹⁰Be, ¹⁰Be^{*})¹⁹⁴Pt^{*} Gamma-Ray Energy Spectra

E.A. McCutchan et al., PRL 103, 192501 (2009).
E.K. Warburton et al., Phys. Rev. 148, 1072 (1966).
T.R. Fisher et al., Phys. Rev. 176, 1130 (1968).

Result in excellent agreement with 2N NCSM and 3N GFMC ab initio calculations.

The ¹⁰Be Collaboration

Measurement of the Sign of the Spectroscopic Quadrupole Moment for the 2_1^+ State in ¹⁰Be: A Confining Test of *Ab Initio* Calculations

J. N. Orce,^{1,2} M. K. Djongolov,¹ T. E. Drake,³ P. Navrátil,^{1,4} H. Al Falou,^{1,5} G. C. Ball,¹ R. Churchman,¹ D. S. Cross,⁶ P. Finlay,⁷ C. Forssén,⁸ A. B. Garnsworthy,¹ P. E. Garrett,⁷ G. Hackman,¹ A. B. Haves,⁹ R. Kshetri,^{1,6} J. Lassen,¹ K. G. Leach,⁷ R. Li,¹ J. Meissner,¹ C. J. Pearson,¹ E. T. Rand,⁷ F. Sarazin,¹⁰ S. K. L. Sjue,¹ M. A. Stoyer,⁴ C. S. Sumithrarachchi,⁷ C. E. Svensson,⁷ E. R. Tardiff,¹ A. Teigelhoefer,¹ S. Triambak,¹ S. J. Williams,¹ J. Wong,⁷ and C. Y. Wu⁴ ¹TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada ²Department of Physics, University of the Western Cape, P/B X17, Bellville, ZA-7535 South Africa ³Department of Physics, University of Toronto, Toronto ON, M5S 1A7, Canada ⁴Lawrence Livermore National Laboratory, Livermore, CA 94550, USA ⁵Astronomy and Physics Department, Saint Mary's University, Halifax, NS B3H 3C3, Canada ⁶Department of Chemistry, Simon Fraser University, Burnaby BC, V5A 1S6, Canada ⁷Department of Physics, University of Guelph, Guelph ON, N1G 2W1, Canada ⁸Fundamental Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden ⁹Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA ¹⁰Physics Department, Colorado School of Mines, Golden, CO 80401, USA (Dated: February 4, 2012)

The TIGRESS Integrated Plunger

- TIP delivers a new experimental program at TRIUMF using accelerated beams from ISAC-II and variety of reaction mechanisms for studies of exotic nuclei.
- TIP offers unmatched flexibility for nuclear structure studies via lifetime and Coulomb excitation measurements.
- Recoiling nuclei travel at about 10 μm/ps (compared to 100 μm/ps at NSCL).
 Lifetime lower limit depends upon achieving the smallest target-stopper gap.

TIP Auxiliary Detector Systems

A suite of charged particle detectors has been developed for TIP, including a silicon S3 detector, a silicon PIN diode forward wall, and CsI crystals.

CsI(TI) Ball for Charged-Particle Tagging

- Commissioning ⁴⁰Ca(³⁶Ar, 2α)⁶⁸Se lifetime measurement will use fusion-evaporation reactions.
- Radiation-hard 3π CsI(Tl) scintillator array necessary for reaction channel selection.

⁴⁰Ca(³⁶Ar, 2α)⁶⁸Se CsI Pulse Shape Analysis

WNPPC 2012

SFU

Summary

- Electromagnetic transition rate measurements with radioactive beams play an important role in our understanding of the nucleus and provide stringent benchmark tests of nuclear models.
- Precision Coulomb excitation measurements with TIGRESS and BAMBINO together with lifetime measurements have demonstrated the capability of directly accessing the shape of nuclear charge distributions.
- The addition of TIP and its suite of charged particle detectors opens the door for precision lifetime measurements with radioactive beams at the ISAC-II facility at TRIUMF.

The TIP Collaboration

K. Starosta, C. Andreoiu, R. Austin, G. Ball, P. Garrett, G. Hackman, C. Svensson, P. Voss, R. Ashley, A. Chester, D. Cross, J. Pore

The TIGRESS Collaboration

R. Henderson and the TRIUMF Detectors/Engineering Group

The SFU Science Machine and Electronics Shop

Funded by NSERC award SAPIN/371656-2010 and SAPEQ/390539-2010

Thank you! Merci!

Lifetime Measurements at TRIUMF

Recoiling nuclei travel at about 10 μ m/ps (compared to 100 μ m/ps at NSCL). Lifetime lower limit depends upon achieving the smallest target-stopper gap.

- Foil flatness and uniformity.
- Parallel-alignment and distance stability.
- Sensitive gap control mechanism.

¹⁰Be + ¹⁹⁴Pt: Experimental Details

Laser-ionized ¹⁰Be²⁺ radioactive beam properties:

- Accelerated to final energy of 41 MeV
- Intensity on target of approximately 10⁷ ions per second
- Beam on target for approximately 100 hours

¹⁹⁴Pt target with thickness of 3 mg/cm²

TIGRESS array properties:

- Eight clovers were used, full Compton suppression
- 9.0% gamma-ray efficiency at the 328 keV excitation energy of ¹⁹⁴Pt
- 2.5% gamma-ray efficiency at the 3368 keV excitation energy of ¹⁰Be

¹⁹⁴Pt(¹⁰Be, ¹⁰Be^{*})¹⁹⁴Pt^{*} Particle Energy Spectrum

¹⁰Be elastic and inelastic scattering peaks detected by BAMBINO.

Measured gamma-ray yields well reproduced with GOSIA.

Philip J. Voss WNPPC 2012

SFU

¹⁰Be Quadrupole Moment Calculations

The TIGRESS Integrated Plunger

CsI(TI) Ball: Pulse Shape Analysis

Fusion-Evaporation Reactions with TIP

Formation of compound nucleus with high recoil velocity and spin.

Decay to ground state proceeds first by particle emission

Charged particle detection and identification with Csl array.

And then by gamma-ray emission

Philip J. Voss WNPPC 2012

 Detection by TIGRESS. DSAM or RDM lifetime measurements can proceed.

SFU

Importance of ⁶⁸**Se**

Model	Shell Model	Interacting	Hartree-	Self-consistent		Vampire
		Boson Model	Bogoliubov	Collective Coordinate		
Reference	[1]	[2]	[3]	[4](a)	[4](b)	[5]
$B(E2,2^+_1 \rightarrow 0^+_1) \ [e^2 fm^4]$	100	280	500	725	834	1048

- [1] M. Hasegawa, et. al., Phys. Lett. B 656, 51 (2007).
- [2] F. II. Khudair, Y. S. Li, G. L. Long, Phys. Rev. C 75 054316 (2007).
- [3] T. A. War et. al., Eur. Phys. J. A 22, 13 (2004).
- [4] N. Hinohara et. al., Prog. Theor. Phys. (Kyoto) 119, 59 (2008).
- [5] A. Petrovici et. al., Nucl. Phys. A 710, 246 (2002).

▲ □ ▶ ▲ 클 ▶ ▲ 클 ▶ ▲ 클 ● ④

Reduced Collectivity in Light Stable Sn

New reported B(E2) values in stable even-even tin isotopes (red) present a clear discrepancy with previous measurements and significant revisions to data normalized by these results (black squares).

Reduced Collectivity in Light Stable Sn

TIP will address the experimental discrepancies in ¹¹²⁻¹¹⁸Sn using the complimentary approaches of sub-barrier Coulomb excitation and lifetime studies.

- For proper kinematic reconstruction and event-by-event Doppler correction to obtain the Coulex cross section and thus the B(E2) value.
- To separate contaminant Coulomb excitation within the heavy DSAM stopping material via light target recoil detection in coincidence with gamma rays.

Doppler Shift Attenuation Method

Adapted from Kris Starosta

¹⁸C Observed Transitions and Level Scheme

SFl

Geant4/ROOT Simulations

	Geant4 Root User Interface					
<u>File Windows Root</u>		<u>H</u> elp				
	Geant4/ROOT Philip J. Voss					
random	/Be:	amin				
process constant	Incoming beam control. [A] Select the mass number for [Z] Select the atomic number f [KE] Set kinetic energy for th [KEU] Set kinetic energy per m [Dpp] Set momentum acceptance [Report] Report parameters for	the incoming beam. or the incoming beam. the incoming beam. Sucleon for the incoming beam. for the incoming beam. the incoming beam.				
	TreeViewer					
File Edit Bun Options	File Edit Bun Ontions Heln					
	Ontion Histogram hter					
Y □ Current Folder DV □ TreeList □ maxAta □ □ Bta0 □ □ Fesults □ □ Ggun □ □ Fesults □ □ target_face □ ✓ □ target_face □ ✓ □ Experiment □ vis	Current Tree : Tree reaction.globaltime decay (reaction.KE decay (reaction.x decay (reaction.y decay (dec	phi farget_face ime target_face.beta abtime target_face.theta globaltime target_face.theta kE target_face.theta karget_face.lime target_face.lime k target_face.labtime / target_face.labtime / target_face.labtime / target_face.KE				
	First entry : 0 Last entry : -1	RESET				
Command: /Beamin/						
Incoming beam control.		Idle				

Experimental Geometry

Incident Secondary Beam Properties

Knockout Reaction Kinematics

Gamma-Ray Decay Processes

Detector Response

Feeding Corrections

Constraint of Systematic Errors

One-Proton Knockout Reaction Simulations

Comparison of simulated (blue) and experimental (red) ¹⁸C reaction residue parameters behind the degrader from the 1p knockout of ¹⁹N.

¹⁸C: Investigation of Systematic Errors

A two-variable χ^2 hypersurface fit to the data constrained the ¹⁸C targetdegrader reaction ratio (R_σ). An additional constraint was extracted from the 3.0 mm distance data.

Lifetime scans using the upper and lower limits for R_{σ} yielded the systematic error.

$$R_{\sigma} = 2.15^{+0.74}_{-0.34} \rightarrow 22.4^{+2.2}_{-1.1}(syst)ps$$

Uncertainties in the ¹⁸C momentum distribution also introduced a symmetric systematic error of 1.1 ps. All other sources of error were found to be negligible.

$$\tau = 22.4 \pm 0.9(stat)^{+2.5}_{-1.6}(syst)ps$$

The Segmented Germanium Array

 $E_{res} \approx 2.2\%$ after Doppler corrections $\epsilon \approx 2\%$ at 1.33 MeV

Digital Data Acquisition System

All 495 channels of Plunger SeGA were instrumented with DDAS, consisting of 4 Compact PCI/PXI crates and 39 Pixie-16 DGF Modules from XIA.

Individual waveforms of gamma-ray events were captured and stored on a 10 TB storage server, opening the door for pulse shape analysis investigations.

Energy and timing information were extracted and merged with the S800 analog data to fully reconstruct the event, providing near real-time analysis.

DDAS Pulse Shape Analysis

K. Starosta et al., NIM A 610, 700 (2009).

Philip J. Voss WNPPC 2012

SFU