COOKING WITH THE STARS

What are we made of?

What are we made of?

Element	% (no. of atoms)	How they were made
Hydrogen	61.6	Big Bang
Oxygen	26.3	?
Carbon	9.99	?
Nitrogen	I.48	?
Calcium	0.24	?
Phosphorus	0.20	?
Sulphur	0.06	?
Sodium	0.06	?
Chlorine	0.04	?
Magnesium	0.03	?

Nuclei

Nuclear Safety Officer

Rutherford's Discovery - 1911

Basic Ingredients

free protons live forever, but neutrons decay in about 10 minutes

10

Basic Ingredients

Beta decay of the neutron

11

Carbon-II with too many protons

changes to boron-II by emitting a positron

Lithium-II with too many neutrons

Changes to beryllium - 11 by emitting an electron

The simplest nuclear reaction: a proton meets a neutron

If we could weigh nuclear particles we could calculate the energy released

J.J. Thompson - 1897 -discovery and mass of the electron-

Figure 1: Schematic of J.J. Thompson's experiment.

This was the first mass spectrometer

The Canadian Penning Trap

Ion Trap

from ion guide

+ve caps keep the ion from escaping axially

- magnetic field keeps the ion from escaping radially

Measuring the frequency

-kick the ions out of the trap -the ones that have spun in the field arrive first

Chart of Nuclides

Supernova 1987a - before and after

X-ray bursts on a neutron star

Understanding Stellar Cooking

rp-process measurements using the ATLAS beam

• More than 40 proton-rich nuclides measured over the past few years • Most masses were determined to better then 10 keV/e²

• Most masses were determined to better than 10 keV/c²

G. Audi et al., Nucl. Phys. A 729, 337 (2003).

Californium Fission

r-process measurements using the californium source ²⁵²Cf Heavy Fission Peak

- Ongoing program of measurements since March 2008, target 15 keV uncertainty
- 40 species, 5 have never been previously measured by any means, most others improved by a typical factor of 5
- Adds to 30 measurements taken at CPT in past years with small gas catcher

Mass Measurement Penning Trap Facilities

Operating Under Construction Planned