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Problem 1: JBBS 1.1

Part (a)

Here, we are asked to examine the non-relativistic limit of the classical action for a relativistic point
particle. To go to the the non-relativistic limit we fix the gauge by setting τ = X0 = t and take the
limit Ẋ i ≡ vi ≪ 1. Then the point particle action becomes

Spp = −m

∫

dτ
√

−∂τXµ∂τXµ

= −m

∫

dt

√

−
(

−1 + Ẋ · Ẋ
)

= −m

∫

dt
√

1− v2

≈
∫

dt

(

mv2

2
−m

)

. (1)

The first term is the usual kinetic energy term while the second is from the rest mass. The Lagrangian
can be written as the difference of kinetic and potential terms

L = T − V (2)

where T = 1
2mv2 and V = m.

Part (b)

The Nambu-Goto string action is

SNG = −
1

2πα′

∫

dτ dσ
√
−h (3)

where h = det hab and hab = ∂aXµ∂bXµ. To connect with the non-relativistic limit we choose the
gauge such that τ = X0. Then,

hab =

[

−1 + v2 v · y
v · y y2

]

(4)
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where v = ∂τX and y = ∂σX. The determinant, −h, is

− h =
(

1− v2
)

y2 + (v · y)2 . (5)

In the limit that v ≪ 1 the Nambu-Goto action becomes,

SNG ≈ −
1

2πα′

∫

dτ dσ y

(

1−
1

2

(

v2 −
v · y
y2

))

=
1

2πα′

∫

dτ dσ y

(

1

2

(

v2 −
v · y
y2

)

− 1

)

. (6)

The first term in the action above is proportional to the string velocity squared. Therefore, we expect
the first term to be “kinetic” and the second term to be “potential”. In fact, the problem hints that the
kinetic term will only depend on the transverse velocity. To see this, note that the vector y is tangent
to the string. Therefore, to get the transverse velocity we must subtract out the tangent component
of v

vT = v −
(v · y)
y2

y. (7)

Squaring the transverse velocity,

v2T = v2 −
(v · y)2

y2
, (8)

we see that the kinetic term in the action is indeed proportional to the transverse velocity squared

SNG =
1

2πα′

∫

dτ dσ y

(

v2T
2

− 1

)

. (9)

Next, we examine the potential term which should be proportional to the length of the string. The
length of the string is given by

ℓs =

∫

dσ |∂σX| =
∫

dσ y. (10)

With the above, the NG Lagrangian can be written as a kinetic term (proportional to v2T ) minus
a potential term (proportional to ℓs)

LNG = TNG − VNG (11)

where

TNG =
1

2πα′

∫

dσ y

(

v2T
2

)

, (12)

VNG =
ℓs

2πα′
. (13)

Finally, we want to identify the tension, T, and the linear mass density, µ, of the string. The
potential term is some constant times the length of the string. By dimensional analysis, the constant
of proportionality is energy per length (i.e., the tension)

T =
1

2πα′
= µ. (14)
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Problem 2: JBBS 1.5

We are asked to evaluate the “twisted” sum

S =
∞
∑

n=1

(n− θ) =
1

24
−

1

8
(2θ − 1)2 (15)

using the regularization scheme described in §1.3 of JBBS. In the text a similar sum is evaluated by
regularizing the sum using the exponential

exp

{

−ϵ
|kσ|√
γσσ

}

(16)

where kσ = nπ/ℓ, γab is the the metric on the world sheet and the factor 1/
√
γσσ is included to make

this invariant under reparameterizations of σ (above σ ∈ [0, ℓ]).
We evaluate S by evaluating the sum

S′ =
∞
∑

n=1

(n− θ)e−ϵ kσ√
γσσ (17)

for kσ = (n− θ)π/ℓ and then passing to the limit ϵ → 0. Defining a =
√

π/(2p+ℓα′) , S′ becomes

S′ =
∞
∑

n=1

(n− θ)e−ϵa(n−θ)

= −
1

a

d

dϵ

∞
∑

n=1

e−ϵa(n−θ)

= −
1

a

d

dϵ
eϵaθ

∞
∑

n=1

(

e−ϵa
)n

= −
1

a

d

dϵ
eϵaθe−ϵa

∞
∑

n=0

(

e−ϵa
)n

= −
1

a

d

dϵ

eϵaθ

eϵa − 1

=
d

dϵ

[

−1

a2ϵ
+

1− 2θ

2a
−

6θ2 − 6θ + 1

12
ϵ+O(ϵ2)

]

=
1

a2ϵ2
−

6θ2 − 6θ + 1

12
+O(ϵ)

=
1

a2ϵ2
+

(

1

24
−

1

8
(2θ − 1)2

)

+O(ϵ). (18)

In the limit ϵ → 0 the terms of O(ϵ) and higher vanish. However, the first term above is a quadratically
divergent in the small ϵ limit. This divergent term is cutoff dependent and proportional to ℓ (recall
a =

√

π/(2p+ℓα′)). JBBS argues that this divergence can be canceled by a counterterm proportional
to
∫

dτdσ
√
−γ in the action. Therefore we discard the quadratically divergent term and find that

S = lim
ϵ→0

S′ =
1

24
−

1

8
(2θ − 1)2 (19)

as required.
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Problem 3: JBBS 1.5

In the light cone gauge, the transverse coordinates Xµ satisfy the free wave equation

∂τX
µ = c2∂2

σX
µ. (20)

The general solution is

Xµ(τ,σ) = xµ
0 + aµτ + bµσ +

∑

n̸=0

(

Aµ
ne

−iωn(cτ+σ) +Bµ
ne

−iωn(cτ−σ)
)

. (21)

The Neumann boundary conditions on the i < 25 coordinates yield the solutions

X i<25(τ,σ) = xi
0 +

pi

p+
τ + i

√
2α′

∑

n̸=0

αi
n

n
exp

(

−
πincτ

ℓ

)

cos
(πnσ

ℓ

)

. (22)

For i = 25 we apply Dirichlet boundary conditions

X25(τ,σ = 0) = 0 (23)

X25(τ,σ = ℓ) = y (24)

to get

X25(τ,σ) =
y

ℓ
σ +

√
2α′

∑

n̸=0

α25
n

n
exp

(

−
πnicτ

ℓ

)

sin
(πnσ

ℓ

)

. (25)

Notice that the reality of X25 implies that α25
−n =

(

α25
n

)†
.

Now with the mode expansion in hand we quantize the string modes and compute the mass spec-
trum. To do this we calculate the conjugate momenta Π25. From the Polyakov Lagrangian

L = −
ℓ

2πα′
γσσ∂τx

− +
1

4πα′

∫ ℓ

0
dσ

[

γσσ∂τX
i∂τX

i −
∂σX i∂σX i

γσσ

]

, (26)

we obtain

Π25 =
δL

δẊ25

=
1

2πα′
γσσ∂τX

25

=
p+

ℓ
∂τX

25

=
−i√
2α′ℓ

∑

n̸=

α25
n exp

(

−
πnicτ

ℓ

)

sin
(πnσ

ℓ

)

(27)

where we have used p+/ℓ = γσσ/(2πα′) and c/ℓ = 1/(2πα′p+).
The commutation relations among the αi

n are derived by imposing the equal τ commutation
position-momentum commutation relations

[X i(σ),Πi(σ′)] = iδ(σ − σ′). (28)
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Substituting the explicit forms for X25 and Π25 we obtain

iδ(σ − σ′) = −
i

ℓ

∑

n,m ̸=0

1

n

[

α25
n ,α25

m

]

exp

(

−
π(n+m)icτ

ℓ

)

sin
(πnσ

ℓ

)

sin

(

πmσ′

ℓ

)

. (29)

Since the LHS is independent of τ , the coefficient of exp
(

−π(n+m)icτ
ℓ

)

on the RHS must vanish for

m+ n ̸= 0. This restricts the sum on the RHS to configurations where m+ n = 0

δ(σ − σ′) = −
1

ℓ

∑

n̸=0

1

n

[

α25
n ,α25

−n

]

sin
(πnσ

ℓ

)

sin

(

−πnσ′

ℓ

)

=
1

ℓ

∑

n̸=0

1

n

[

α25
n ,α25

−n

]

sin
(πnσ

ℓ

)

sin

(

πnσ′

ℓ

)

=
2

ℓ

∑

n>0

1

n

[

α25
n ,α25

−n

]

sin
(πnσ

ℓ

)

sin

(

πnσ′

ℓ

)

. (30)

Multiplying by sin
(

πn′σ′

ℓ

)

and integrating by σ′ we obtain,

∫

dσ′ sin

(

πn′σ′

ℓ

)

δ(σ − σ′) =
2

ℓ

∑

n>0

1

n

[

α25
n ,α25

−n

]

sin
(πnσ

ℓ

)

∫

dσ′ sin

(

πn′σ′

ℓ

)

sin

(

πnσ′

ℓ

)

sin

(

πn′σ

ℓ

)

=
∑

n>0

1

n

[

α25
n ,α25

−n

]

sin
(πnσ

ℓ

)

δnn′

=
1

n′

[

α25
n′ ,α25

−n′

]

sin

(

πn′σ

ℓ

)

. (31)

From the above, we arrive at the mode commutation relations
[

α25
n ,α25

−n

]

= n. (32)

To calculate the mass spectrum we need the contribution to the Hamiltonian from the 25th mode.
The Hamiltonian is given by equation (1.3.19) of JBBS

H =
D−1
∑

i=2

Hi (33)

Hi =
ℓ

4πα′p+

∫ ℓ

0
dσ

(

2πα′ΠiΠi +
1

2πα′
∂σX

i∂σX
i

)

. (34)

Using

(

Π25
)2

= −
1

2α′ℓ2

∑

n,m≠0

α25
mα25

n exp

(

−
π(m+ n)icτ

ℓ

)

sin
(πmσ

ℓ

)

sin
(πnσ

ℓ

)

(35)

∂σX
25 =

y

ℓ
+

√
2α′π

ℓ

∑

n̸=0

α25
n exp

(

−
πnicτ

ℓ

)

cos
(πnσ

ℓ

)

(36)

(

∂σX
25
)2 →

(y

ℓ

)2
+

2α′π2

ℓ2

∑

m,n̸=0

α25
mα25

n exp

(

−
π(m+ n)icτ

ℓ

)

cos
(πmσ

ℓ

)

cos
(πnσ

ℓ

)

(37)
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(where → denotes equality under a dσ integral) we obtain

H25 =
ℓ

4πα′p+

∫ ℓ

0
dσ

(

2πα′Π25Π25 +
1

2πα′
∂σX

25∂σX
25

)

=
1

4α′p+ℓ

∑

n,m ̸=0

α25
mα25

n exp

(

−
π(m+ n)icτ

ℓ

)
∫ ℓ

0
dσ
(

cos
(πmσ

ℓ

)

cos
(πnσ

ℓ

)

− sin
(πmσ

ℓ

)

sin
(πnσ

ℓ

))

+
y2

8π2α′2p+
. (38)

After some algebra one can show that

∑

n,m ̸=0

α25
mα25

n exp

(

−
π(m+ n)icτ

ℓ

)
∫ ℓ

0
dσ
(

cos
(πmσ

ℓ

)

cos
(πnσ

ℓ

)

− sin
(πmσ

ℓ

)

sin
(πnσ

ℓ

))

= 2ℓ
∑

m>0

(

α25
−mα25

m +
m

2

)

= 2ℓ

(

∑

m>0

α25
−mα25

m −
1

24

)

. (39)

Thus,

H25 =
1

2α′p+

(

∑

m>0

α25
−mα25

m −
1

24

)

+
y2

8π2α′2p+
. (40)

From JBBS, the Hamiltonian for the modes where i < 25 is given by

Hi<25 =
pipi

2p+
+

1

2α′p+

(

∑

m>0

α25
−mα25

m −
1

24

)

.

Therefore the total Hamiltonian is

H =
D−1
∑

i=2

[

pipi

2p+
+

1

2α′p+

(

∑

m>0

α25
−mα25

m −
1

24

)]

+
1

2α′p+

(

∑

m>0

α25
−mα25

m −
1

24

)

+
y2

8π2α′2p+

=
1

2α′p+

(

D−1
∑

i=2

∑

m>0

αi
−mαi

m +
2−D

24

)

+
D−1
∑

i=2

pipi

2p+
+

y2

8π2α′2p+
. (41)

Now we can calculate the mass spectrum of the string

M2 = −pµp
µ

= 2p+p− − pipi

= 2p+H − pipi

=
1

α′

(

D−1
∑

i=2

∑

m>0

αi
−mαi

m +
2−D

24

)

+
D−1
∑

i=2

pipi +
y2

4π2α′2
−

D−1
∑

i=2

pipi

=
N

α′
+

2−D

24α′
+

y2

4π2α′2
. (42)
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where N =
∑D−1

i=2

∑

m>0 α
i
−mαi

m ≡
∑D−1

i=2

∑

m>0mNi,m is the level.
For the theory to be non-tachyonic, we require M2|N=0 ≥ 0. This implies

y2 ≥
α′π2

6
(D − 2) . (43)

If y = 0 then both ends of the string are attached to the same D24 brane. The massless particles
correspond to the states where one of the D− 2 oscillators are excited. The invariant “photon” mass is

M2
1 =

2−D

24α′
+

1

α′
=

26−D

24α2
.

To ensure that the photon is indeed massless, we require D = 26. Here the modes for i < 25 oscillate
parallel to the D24 brane and correspond to fields on the 24-dimensional hypersurface. The i = 25
modes are perpendicular to the brane and correspond to fluctuations of the brane.

Problem 4

We are asked to find the mode expansion for an open string with one end satisfying a Neumann
condition and the other end lying on a Dp-brane having Xp+1, . . . , X25 = 0. For i ≤ p, the solutions
are given by (22). For i ≥ p+ 1, we apply the boundary conditions

X i≥p+1(τ,σ = 0) = 0 (44)

∂σX
i≥p+1(τ,σ = ℓ) = 0 (45)

to the general solution (21) to obtain

X i≥p+1(τ,σ) =
√
2α′

∑

n∈Z+ 1

2

αi
n

n
exp

(

−
inπcτ

ℓ

)

sin
(πσ

ℓ

)

. (46)

Notice that the linear terms in τand σ along with the constant term are not permitted with the
conditions (44) and (45). Furthermore, the reality of X i implies that αi

−n = αi†
n . For i ≥ p + 1, the

canonical momentum is

Πi≥p+1(τ,σ) =
p+

ℓ
∂τX

i≥p+1

= −
i√
2α′ℓ

∑

n∈Z+ 1

2

αi
n exp

(

−
inπcτ

ℓ

)

sin
(πσ

ℓ

)

. (47)

Notice that (46) and (47) are obtained from (25) and (27) by setting y = 0 and letting n run over the
half-integers instead of the whole integers.

To quantize the modes on the string we impose the canonical commutation relations

[X i(σ),Πi(σ′)] = iδ(σ − σ′). (48)

It is easy to show that for all i the Fourier modes satisfy the following commutation relation
[

αi
n,α

i
−n

]

= n. (49)
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The contributions to the Hamiltonian from the i ≥ p+ 1 modes are

Hi≥p+1 =
1

4α′p+ℓ

∑

n,m∈Z+ 1

2

αi
mαi

n exp

(

−
π(m+ n)icτ

ℓ

)

×
∫ ℓ

0
dσ
(

cos
(πmσ

ℓ

)

cos
(πnσ

ℓ

)

− sin
(πmσ

ℓ

)

sin
(πnσ

ℓ

))

=
1

2α′p+

∑

m∈Z+ 1

2

(

αi
−mαi

m +
m

2

)

=
1

2α′p+

⎛

⎝

∑

m∈Z+ 1

2

αi
−mαi

m +
1

2

∑

m>0

(

m−
1

2

)

⎞

⎠

=
1

2α′p+

⎛

⎝

∑

m∈Z+ 1

2

αi
−mαi

m +
1

2

(

1

24
−

1

8

(

2

(

1

2

)

− 1

)2
)

⎞

⎠

=
1

2α′p+

⎛

⎝

∑

m∈Z+ 1

2

αi
−mαi

m +
1

48

⎞

⎠ (50)

where we have used the result from problem 2 to complete the sum in the second term. The full
Hamiltonian is becomes

H =
p
∑

i=2

[

pipi

2p+
+

1

2α′p+

(

∑

m>0

αi
−mαi

m −
1

24

)]

+
1

2α′p+

D−1
∑

i=p+1

⎛

⎝

∑

m∈Z+ 1

2

αi
−mαi

m +
1

48

⎞

⎠

=
1

2α′p+

⎛

⎝

p
∑

i=2

∑

m>0

αi
−mαi

m +
D−1
∑

i=p+1

∑

m∈Z+ 1

2

αi
−mαi

m

⎞

⎠ +
1

2α′p+

⎛

⎝−
p
∑

i=2

1

24
+

D−1
∑

i=p+1

1

48

⎞

⎠+
p
∑

i=2

pipi

2p+

=
1

2α′p+

⎛

⎝

p
∑

i=2

∑

m>0

αi
−mαi

m +
D−1
∑

i=p+1

∑

m∈Z+ 1

2

αi
−mαi

m

⎞

⎠ +
1

2α′p+

(

−
p− 1

24
+

D − 1− p

48

)

+
p
∑

i=2

pipi

2p+

=
N

2α′p+
+

1

2α′p+
D − 3p+ 1

48
+

p
∑

i=2

pipi

2p+
(51)

where

N =
p
∑

i=2

∑

m>0

αi
−mαi

m +
D−1
∑

i=p+1

∑

m∈Z+ 1

2

αi
−mαi

m. (52)

The mass spectrum is then

M2 =
N

α′
+

D − 3p+ 1

48α′
. (53)

For the theory to be tachyonic, we require

D − 3p+ 1

48α′
< 0 =⇒ p >

D + 1

3
. (54)
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