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Problem 1

a) Evaluate the OPE
T..(2): et X(0,0) .

using Wick’s theorem. Expand the exponential, then sum over contractions between T' and the sum (there will be
zero, one, or two contractions), and then do the sum, which should simplify if you’ve done the combinatorics right.
Finally, Taylor expand inside the normal ordering, and get all singular terms. Show that the exponential is a tensor,
of the weight given in class.

b) Do the same for
. eikle(z,Z) . eikz'X(OxO) .
to recover the result given in class. Carry the Taylor expansion further, up to and including terms down by 22, z2
in the OPE.

,RZ

Part (a)
For the free scalar field, the holomorphic worldsheet energy-momentum function is
T..(2) = —5 1 0XH(2)0,X (2) 1.
Therefore, we are looking for the OPE to
—é DOXH(2)0, X (2) i R XO0)
The product of two normal ordered operators is given by equation (2.2.10) of JBBS
F G = FG:+ Z cross-contractions.

With F = 0X#(2)0X,,(z) and G = e X0 we obtain

; 1 ; 1
T..(z) : e X(00) .= o DXH(2)0X ,(2)emX(00) > Zcross—contractions.



The remaining unknown is just the sum of cross-contractions

Zcross—contractions = Z [6X/‘(Z)8Xu(z)’ eik'X(Oy(J)}

o CcC
=3 ST OX (200X, (), (K - X(0,0)) ] o
n=0 " CC

where Y [F, G] ¢ denotes the sum of all cross-contractions of the operators F and G. The last ingredient that we will
need in for calculating the sum of all cross-contractions is the basic cross-contraction

o 9 o
0X4(2), X*(0,0)] = S P 0n 2f* = — &y,

In equation (1) there will be terms with zero, one and two contractions:

1) For n = 0, there are no contractions

S 0XH(2)0X,(2), ] = 0.
CC

2) For n =1, there are only terms with one contraction

D [0XH(2)0X (), ik - X(0,0)] o = ikanu [DX*(2), X*(0,0)]c 1 0X(2) :
CcC

+ ikanu [0XY(2), X*(0,0)] o : 0XH(2)

— <_;Z/> ik s OX(2) : + (—;;) ik 1 0X%(2) :

3) For n > 2, the cross-contraction sum is

D 0XH(2)0X,u(2), (ik - X(0,0))") o = ik - -ika, D [0X"(2)0X,(2), X2 (0,0)... X (0,0)]cc -
CcC CcC

Note that sum of cross-contractions is completely symmetric in the indices g ... a,. Furthermore, there are terms
with one contraction and terms with two:

(a) Single cross-contraction:

Z [aXM(Z)aXH(Z)v (Zk ’ X(O’ O))n]single cC
CcC

= ke - ika, Y [0XH(2)0X,,(2), X°1(0,0) ... X (0,0)]
cC
= nika, ... ika, : 9X*(2)X°2(0,0)... X% (0,0) : [0X,(2), X*1(0,0)] ¢
+ nikg, . ke, : 0X,(2)X%2(0,0) ... X" (0,0) : [9X"(2), X*1(0,0)] ¢
/
=n (—O‘> ik, : XM (z) (ik - X(0,0))" " :

z

single CC

The factor of n comes from the fact that each 0X can be paired up with X in n different ways.



(b) Double cross-contraction:

D~ 10X (20X, (=), (i - X(0,0)" ] goute cc
cC
= ’Lkal s ikanr Z [8X#(Z)8XH(Z)7 X (05 O) S X (07 O)]double CC

CcC
=n(n—1)ika, ...ike, : X2(0,0)... X% (0,0) : [0X,(2), X1 (0,0)] e [0X"(2), X2(0,0)] 0

/

2
=n(n—1)(-k% (—g‘z) : (ik - X(0,0))" 2
Summing up the single cross-contraction terms we obtain

3 % ST OXP (2)0X,u(2), (#K - X(0,0)"] e o
—0‘) ik DX (2 +Zn, (-i) ik, 1 OX*(2) (ik - X(0,0))" "

[ LOX*(z +Z zk 8X()(ik;-X(O,O))”_1:]
[Z’ka LOXO(2) : + i %ika L OX°(2) (ik - X(0,0))" :]

n=1

Summing the double cross-contractions yields

> ZBX” )0X,u(2). (k- X(0.0))" | gouie cc
n= 0 .

/2k2 oo 1 _
- ¢ ik - X(0,0))"

Substituting the single and double cross-contraction sums into (1), we obtain
A 1 ‘ 1
T..(z) : eFX00) .— _ i IXH(2)0X ,(z)ethX(0.0) — Zcross—contractions
1 .
=— — 1 9X"(2)0X,,(2)e X (O:0) ;

+ ko : aXo‘(z)eik'X(O’o) :

~

kK
TZQ e k- X(0,0) T (2)

To finish calculating an the OPE we Taylor expand inside the normal ordering to obtain all singular terms. The only term

+

that needs to be expanded is
0X*(z) = 0X“(0) +20°X*(0) + O (2?) ..



Then

L OXHM(2)0X,(2)e* X0 — sum of non-singular terms,
ko, ; ika ; .
W OX(2)ethX(0.0) . — Wa DX (0)e* X0 : tnon-singular terms,
z z
and
i o'k x 0,0 ik-X (0,0
T..(2) : X0 .= o7 e ik-X(0,0) . =2 9X(0)e*X(0:0) . 4 hon-singular terms.

In equation (2.4.16) of JBBS, it is shown that any tensor operator of weight (h, ﬁ) will have an OPE with T, and Tsz of

the form L )
T..(2) : 0(0,0) = Z—zO(O,O) + ;8(9(0, 0) 4+ non-singular terms

with a similar expression for the OPE with T%;. Comparing the above to our result (2), we see that o = o/k*/4 and a
similar calculation tells us that h = h. Therefore, the operator : e X (%0 : is a tensor of weight (a'k?/4,a/k?/4).

Part (b)
Since there are no derivatives of fields in the product : e?*1'X(2:2) .; ¢#k2-X(0.0) . "o can use formula (2.2.8) of JBBS

o 2 1) 1)
F i gi= —— | d dzo 1 — : :
Fug exp < 4 / A1 / 2 H|Zl Z2| 5X]:(211,§1> (5Xg(2’2,22)> 79

to evaluate this OPE. Thus,

tk1-X (2,2 i1ko- O/ v Y 4 1k1-X(2,2) jiko-
s etk X(2,2) . ik X(0,0) . . exp <_4/dz1/dz2 In|z — Z2|277# 0X'%(21,71) 0X§ (22 52)) e At O
’ g ’

. k1o X (2,2) k2 X (0,0) exp< /d2z1/d 2 In |21 — zof2 6 (ik1 - X (2, 2)) 0 (iko 'X(an))> :

0XH(z1,21) XV (22,Z22)
=: M X(2:2)tha X(0.0) oy <4k1 : k2/d2zl /d222 In|z — 20)*6® (21 — 2,2 — 2) 6@ (22;52)> :

eikl-X(z,é)eik2~X((),O)e%(kl-kg)ln\z\Q :

—. ‘Z|a/(k1'k2)/2 oih1-X (2,7) ik X (0,0)

k‘l kz)/2

The factor |z| could be singular. We therefore expand the exponential to get a few of the less singular terms

ik X(2,2) .. ik2-X(0,0) . _ |Z‘o/(k1~k2)/2 . eikl-X(O,O)Jrzikzl~6X(0)+§ik1-5X(O)+O(z2,§2)eikz-X(O,O) :
= |2 Rk itk XOO N (i, 9X(0) + ziky - DX (0) + O(22,2%))" -
n=0

_ ZMZM : ei(k1+kz)-X(0,0) :

7 o "
n iza (ki k2)+12 (ki ko) ( (0 i(k1+ko)-X (0 O)

. o (k1-ky)  a(ky-ka)
+iz & gz & o Th ( X (0
o’ (kq

) e
)) e’L lirkz X(O 0)
4.k2)+22a’(ki.k2) ( ( ))2 i(k1+k2)-X(0,0) :

-z (&

1(k1 +k2)-X(0,0) .

al(ky-kg) _al(ky-kg)
—Zz 4 z 4 +2 (

B 2Za/(ki-k2)+1za’(ki»k2)+l . (kl . 8X(0)) (kl . aX(O))ei(k1+k2).X(0,0) ) (|Z‘3)



Problem 2 (2.8 of JBBS)

What is the weight of f,, : 9X*0X"e®X :? What are the conditions of f,, and k,in order for it to be a tensor?

We could take the OPE of f,, : OXHOXVe X . with T and T to find its weight. Or we could make a rigid rotation and

see how f,, : OXPOXVek X : transforms. Since we already know the weights of X* and : e*X :  (1,0) and (alf, a/f)

respectively, under z — ¢z and Z — (Z we obtain

a/kz _

= - o 2 3
Fu 1 OXMOX VX oy (EEE T, s OXPOX RN

Thus, the weight is (1 + %’“2, 1+ %’“2)

The weight is always the coefficient of the 272 or 272 terms in the OPE expansion of T'(z)O(0,0) or T(2)0(0,0). For a
general operator, the OPE expansion may have more singular terms than z=2 or z~2. However, the OPE of a tensor with

T or T does not have terms more singular than z=2 or z2.

We must work out the OPE with T and T to find conditions on f,,, and k.

_ ) 1 _ .
. v ik-X(0,0) .__ . a . v ik-X(0,0) .
T(z) : OXH(0)dX" (0)et X0 .— —— 1 0X%(2)0Xa(2) 1 0X"(0)0X"(0)e 0.0,
= —i/ OXY(2)0X o (2)0XH(0)0XY (0)e*-X00) . 4 Zcross—contractions
o}
! /1.2
= —720‘32'/# oxv ()00,  RATL f L oxm(0)0X (0)eh X0
z z

ko, = ; .
4 L X% (2)0XH(0)0X"(0)e* X0 . tnon-singular terms.
z

By symmetry we also have the OPE with T

_ - . ! . 'K2/4+1

T(2) : 0X"(0)X" (0)ehX(©:0) ; = —%zk L OX1(0)eih X (00) . +%
z z

ko = 5 ; .

+ % X (2)0XH(0)0X7 (0)e* X0 . fnon-singular terms.

: 8X”(O)(§X”(O)eik‘x(0’0) :

From the above OPEs we see that f, k" = f. k" = 0.

The intermediate results used to calculate this OPE are listed below:

e The sum over all contractions factorizes into sums with zero, one or two contractions:

E cross-contractions = —

Nap a B SY-3'e% ik-X(0,0)
~ ; [ax (2)0XP (=), 0X"(0)D X" (0)e }CC

=10 N [0x(2)0X7(2), 0X*(0)2X” (0)e X )]

single-CC single-CC
Mo @ yv ik-
o L/ﬁ Z [8X (2)0XP(2),0X*(0)0X" (0)e kX(OyO)]doublc—CC
double-CC



e Single cross-contraction sum:

,”L/B Z |:8Xa(z)8Xﬁ(Z)76XI—L(O>5Xy(O)6ik.X(O,O):|

single-CC single-CC
2 @ vV ik- , 2 - ik ’ _ .
= — 2 [0X*(2), X" (0)] o : 0Xa(2)X* (0)™ X 00 *J; |02 (2), et X (00 o OXa(2)2X(0)X*(0) :
1 = . 2 1 . o . . o
== : 3X”(z)3X"(())61k X(0,0) . Y : Zl ] (nik, [0X*(2), X*(0,0)] ) 0X 4 (2)0X™(0)0X" (0) (ik - X(0,0)) 1

= z% : 3X“(z)5X”(0)eik'X(0’0) : —|—% : aXo‘(z)@X“(O)éX”(O)eik'X(O’O) :

e Double cross-contraction sum

SRS [oxe(200X7 (2), 0X7(0)X Y (0) X 00|

/
double-CC

double-CC

= et Z [0X*(2),0X (0)cq [0X7(2), emXO] - ox7(0)

CcC
- %’3 Z 0X()0X7(2), HXOO] X (0)0X"(0)
CC
_ 277aﬁz OX"(2), 0X"(0)] e [0X7(2),eFXON] T 9X¥(0):
CC

”‘“anz [0X2(2)0X7 (=), (ik - X(0,0)"] 1 e IX (00X (0)
n=0

oo

= = 80k, 0X°(2), 0XP O)) . [0XP (), X°(0,0)] g+ DX (0 Z% (¢k - X (0,0

o0

Nap ., . o S 1 , n—
— ik, ik, [0X°(2), X7 (0,0)lcq [0X7(2), X72(0,0)] o 2 OXM(0)0XY(0) Y~ (n 1) (ik - X(0,0))"
n=2
_ —a—/zk“ aXU( Je ik-X(0,0) . +047/k2 . 8X;L(0)5Xu(0)eik<X(O,0) .
223 To4227 '
o [0X"(2), X(0,0)] = —Fn*0ln2|* = — g p
o [0XH(2),0X(0)] = —%/77“0‘ lim,/ 0 [88' In|z — z’|2] = -9 S
o [0X"(2),0X%(0)] =0
Problem 3 (4.1 of JBBS)
Extend the old covariant quantization, for A = —1 and general D, to the second excited level of the open string. Verify

the assertions made in the text about extra positive- and negative-norm states.

Basically, the covariantly quantized Hilbert space is larger than the physical Hilbert space. The process of old covariant
quantization is the identification of the physical Hilbert space.



The Virasoro generators generate the left-over gauge symmetry. Therefore, the Virasoro generators must act trivially on
physical states [¢), |)
(L |¢p) = 0. (3)

The weakest condition that we can impose that satisfies the above constraint is
Ly, |¢) =0 for m > 0. (4)

Then, for m < 0 the matrix element (3) vanishes by action on the left: L, = L_,,. Also, for Ly we need

Lol) = —A[p) (5)

where A is a possible ordering constant. Any state satisfying equations (4) and (5) is called physical. Note that any state
of the form L_,|x) for n > 0 is orthogonal to all physical states

<1/J|L—n|X> = <an|X> =0.

Such states are called spurious. A spurious state that is physical is called null — a state that is orthogonal to all physical
states including itself (such states are essentially zero). We therefore need an equivalence class relation. Two physical
states, ) and |¢'), are equivalent |[¢) = |} if i) — |¢’) is null. The set of equivalence classes is called the observable
spectrum.

e Virasoro generators:

- Lm750 2 Zn—foo m na np
— Lo =505+ 2,2, L an,
— Note that we have not included the ordering constant A in Lg. Instead we have choose to make the A dependence
of explicit in the condition (5).
e Level O:

— The only states at this level are |0; k). They are annihilated by L,,~o because there are no lower states.
— There are also no spurious states because there are not any lower states to raise.

— The physical condition becomes:
(Lo + A)]0,k) = 0.

Using the fact that Lo|y) = o/k?, we must have A = —a/k?.
—mi=—-k*=A/d
o Level 1:
— At level 1 we have D possible states: |e, k) = e o’ ]0; k).
— The condition (4) yields
Lile, k) = V2d/'k - e|0,k) =0
= e k' =0

where we have used

ey
L1|e,k>:2< >a 110, k)
n=-—oo

e,
=5 (e agy + afjon ) o 110, k)
=e, (alﬂa’il) a0, k)

=V2d'kye, (N + ¥ o) 10, k)
=V2d'k - €0, k).



— The Ly condition (5) becomes

(Lo+A) e, k) = (/k* +1+ A) |e,k) =0
— A=-dk* -1

where we have used

Lole, k) = (ag + Z oﬂnaw> e a0, k)

n>0
= (af + o’ a1,) e, 0, k)
= ey (o0 1ad]0, k) + a”y () + o ja1,) [0, k)
=eu (K*+1)a",|0,k)
= (a'k* +1) |e, k).

— The mass of the |e, k) sate is m? = —k? = (A + 1) /o’. There are three cases for invariant mass:

x For A > —1 the invariant mass is positive. However, a consistent theory of interactions with A > —1 is not
known.

x For A < —1 the invariant mass is negative. Clearly, this is not physical.

* Hence, we concentrate on the case where A = —1. Here, the level 1 invariant mass is zero, m? =0 .

— Spurious states are of the form L_1|0,k) = v2a’k-a_1]0, k). Spurious states have e « k and are null if k2 = 0.
Since m? = 0, k? = 0 for all level 1 states and the spurious states become physical (null).

— The observable spectrum has
k> =0, e k=0, el =2 et 4+ kM.
Going to a reference frame for which k,, = (1,1,0,...) or equivalently k* = (—1,1,0,...) implies that e® = —e!
and (607 —eY. €2, ) = (eo — v, = +v,€2,. .. ) Choosing v = €° we obtain e* = (0,0,62, . ) Therefore,
there are a total of D — 2 physical states at level 1. This is the same as in light-cone quantization.

o Level 2:

— At level 2 we have the states |f, e, k) = (fuo! 0"y +e,a”,) |0, k) where f,, is symmetric. Since f,, is sym-
metric, there are (D + 1) D/2+D states. The norm of a general state is (f, e, k| f, e, k') = 2 (fyr, f* + efe™) (0, k[0, k).

— The Ly condition

(Lo — 1) |f,e,k) = (/K> + 1) |f,e,k) =0
— m2=—-k>=1/d

where

1 > .
L0|f,€,k'> (204(2) + Zapnanp> (fMVaila—l +6M0/12) |Oak>
n=1

1
(2043 +al a1, + O‘p20‘2p> (fuwa a2 +eua,) 10, k)

o/k2|f, e, k) + fua? jar,0t 102 110, k) + eal yan,a 5|0, k)
K| f, e k) + fuu (0/110/11 +a” ot + a’ila‘ilailalp) |0, k)
+e, (204‘:2 + aﬂQQ‘iQagp) |0, k)

= d'K*|f,e, k) + 2fum (" 1a”1)10,k) + 2e,0",|0, k)

= (a'k* +2) |f,e,k).



— The L; condition gives e in terms of f and removes D degrees of freedom
Lilf,e k) =2 (ey + \/2a'fwk“) a” 1 10,k) =0
= e, + V2o fu k" =0 (6)

where we have used

L1|f,€,k> =

<Z of L a ) fuv 0¥+ e,aty) [0, k)

n=—oo

(aba_1, + afag, + afar, + o jaz,) (fua”a” | +eat,) 0, k)
a 1,05 +V2a'k O/f) (fuva” a0’y +euat,)|0,k)
W Q—1,0ha 5|0, k) + V2 f k0o a” 110, k)
= ey (202 + a_1pat508) [0,k) + V20 fuk, (e’ + PPl o al) [0, k)
=2 (e + V207 fu k") 0, [0, ).

@ AM\)—* N =

— The Lo condition gives a condition on the trace of f
Lo|f, e, k) 72(\/ ket )|0 k) =0

= V2dk-e+ fl/ =0
= fli = 20 f k" kY (7)

where we have used

Lao|f,e k) < Z oh nanp> (a2 +euay) 0, k)

1
= (a8a2p+ 20/17041;)) (f;wa 102y +eat ) 10, k)
1
= ey appabal )0, k) + ifwo/fozlpa‘ilaill(), k)
Voo i Hoal L kP P .
= V2a'kpe, (207" + al305) [0,k) + 5 fuw (1™ + mpaliaf +mpn™ +nfal af + afal a? ja1,) [0,k)
= (2v2a%k e+ 1) 0,1).

— In the rest frame, ko = 1/v/o/ and k; = 0, equations (6) and (7) imply e, = v/2fo, and fi; = 5fo0.
— There are D + 1 spurious states at this level

la,b;k) = L_ja,0",|0,k) + bL_5|0, k)
———

la,k)

1
=a, (a,l ‘oo +ag- oy o/il) |0, k) + b (ao S+ 50-1 ~a1> |0, k)

1
=a, (v2a’k,,a’ila’il + (a’iz +at ay- al)) |0,k) +b <v2a’k “o_o + F0-1- a1> |0, k)
b
=V2ad'k,a,0” 0 + a0t ,|0,k) + V2a/bk - a0, k) + F0-1 a_1]0, k)

b
= <\/2a'k,,a# + 277#”) a” a0, k) + (a# + \/ﬂbk#) a0, k)
=[f € k)



where
/ \/7, b
fuy =V2a kua,u + 577m/
e}, =a, + V2a/'bk,,.
— In the rest frame,

e, =a, +V20a/bk, = a, + V2bdo
el =V, = (200 = V) by,
1 1/b b
=_fu=c\smi|=1(D-1
foo=cfii=¢ <277 ) 10( )
2
e* . e = ‘an_\/ﬁb‘ :|a|2+\/§a0*b+\/§aob*—|—2|b|2

— In the rest frame, the states with non-negative norm are those for which ag = b = 0.

Problem 4

For the X* CFT, show that the operators L], = L, + (m + 1)v,0, also satisfy a Virasoro algebra, and finds its central
charge (this should be relatively simple using the known result for the algebra of the L,,’s). This has an interpretation in
terms of strings moving in a certain nontrivial spacetime.

We wish to show that the operators L satisfy a Virasoro algebra:

C/
[L.,L.]=(m—n) L’m+n + 12 (m3 — m) Om,—n

for some central charge ¢’. To show that L/ satisfies the above algebra, we calculate the L/, commutator using the
properties of the L,, and o

(L Ly] = [Lin + (m A+ Dvuad,, Ly + (n+ 1v,ad]
= [Lon, L] + (0 + 1)y [Lin, ] 4+ (m + L)wy, [y, L] + (m 4 D)o (n + 1), oy, ]

= ((m —n) Lyptn + £ (m3 — m) 5m,_n> + (n+ Vv, L, oh] — (m + 1)v, [Ly, o] — (m3 — m)v25m7_n

12

= (m —n) Lty —n(n+ Dvah o +m(m+ Db+ (m® —m) (1—02 — 1)2) Om.—n
= (m —n) Liypspn + (m* +m —n® —n)v,ah, ., + (m* —m) (1—62 — v2> Orm,—n

= (m —n) Lin4n + (m—n) (m+n+1) vk + (m® —m) %5,”7,”

= (m ) L + 5 (7 =) 80

Thus, we see that L;, ,,, satisfies a Virasoro algebra with central charge ¢’ = ¢ — 1202

n

We have used the following facts in the derivation of [L/ , L/ ]:

10



e The normal ordering of the creation and annihilation operators is defined so that all annihilation operators (a#, with
m > 0) are to the left of the creations operators (o, with m < 0)

o0

Ly, = 5 o0 _100g

l=—00

— {é Z?ifoo a;_lalu lf m ;é O

1 e’} .
sapao, + Y a0, ifm=0

e The commutator of L,, with o is

1 = o (e}
[LTMQZ] = [2 Z oafn—lall/o7a}7:‘|
l=—00

I lat o, ok ifm#£0
1

o0 .
a0, + Doy a’iloql,?aﬁ] ifm=0

—N

2 oo ([, o] + o,y o] o) if m # 0

aoulal-atT + Sag-otTog, + 300, o [aw, o] + 3072 [a”), ol oy, if m =0
% S (ldl,_nnf,‘a;’nfl +(m—1) 5m_l7_n77“”aly) ifm#0

ISENIE

Yoo W —nmta 4+ 32 (1) 0 — ™ o ifm=0
_ —nady, ., ifm#0

—naok ifm=0
= 77’LO&Hm+n

Problem 5

Consider a CFT with the mode algebra

{bmv Cn} - 5m+n,07
{bm,bn} = {em,cn} =0.

Show that the operators

oo

L, = Z (2m —n) bycpm—n for m #0

Lo= -1+ Z n(b_ncn + c—nbyn),
n=1

satisfy a Virasoro algebra, and determine its central charge. I suggest that, as in class, you pick out the operator (single-
commutator) terms first, and get the constant by acting with [L,,, L_,,] on some particular state, e.g., the one annihilated
by b, and ¢, for n > 0 and by ¢y (though any state will give the same answer).

Note that the mode operators b, ¢, belong the the free bc CFT. A more general expression for the Virasoro generators
in this theory can be found in (2.7.19) of JBBS

oo

1
L, = Z (Am - ’/l) gbncm—ng + 5)‘ (1 - >\) 6m,0

n—=—oo
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(note that b,, and c_,, anti-commute inside the normal ordering in the expression for Ly above). In this problem, we focus
on the special case where \ = 2.

Since Ly, and Lo cannot be expressed in the same format., we must treat several cases of commutator [L,,, L,]:
e m#A0nA0and m#n

oo

Lo, Lu] = > (2m =) (20— §) [biCm—i, bjcn—j]

1,j=—00

= Z (2m — Z) (2n — ]) [bicm_ibjcn_j - bjcn_jbicm_i]
1,j=—00

= Z (2m — i) (2n = 7) [bi (Om—i+5,0 — bjCm—i) cn—j — bj (On—j+i,0 = biCn—j) Cm—i
1,j=—00

= Y @m—=1)(2n =) [(Gm-itjobicnj = bibjem—icn—3) = On—ji,00iCm—i = bbiCn—jCm—i)]
1,j=—00

= > @m—i)(2n— 1) [(Gmitj0bicn—j = On—jiiobjcm—i)]
1,j=—00

= > [m=i)(2n =) bmricni — (2m — i) (n = i) by iCm—i]

= Z [(2m —k)(2n+m — k) — (2m +n — k) (2n — k)] brcngm)—k
k=—o0

=(m—n) Z [2 (m +n) — k] brcingm)—k

(Lo Lol = Y Y (2m =) j ([bicm—i,b—je;) + [bicm—i, c—5b5)

i=—00 j=1

Z Z (2m — 1) j (6m—i—j,0biCj — 0itj0b—jCm—i + di—jobjCm—i — 0j—itm,0bic—;)

i=—o00 j=1

=Y G ((m+ ) bnje; — @m+ ) b_jemy; + (2m = ) bicm—j — (m = §) by jc—)

j=1
=Y imA+ D bmge+ > G (A7) bmje; +> G 2m =) bjemj+ > 5 (2m =) bjem
3>0 3<0 3>0 7<0
= Z J(m+7)bm—jc; + Z Jj(@2m—j)bicm—;
j=—00 Jj=—00
= > [(m—k)(2m — k) brcomr + k (2m — k) bcpn ]
k=—o0
=m Z (2m — k) bpcm—r
k=—o0
=mL,,
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where we have used the intermediate results

[bicm_i, b_jCj} = bicm_ib_jCj — b_jCjbiCm_i
= bi (Om—i—j,0 — b—jcm—i) ¢; — b_j (diyj0 — bicj) Cm—i
= (b,jbiCij,i — bib,ij,iCj) + (5m7i7j70bicj — 5i+j,0b,jcm,i)

= Om—i—j,0bic; — ditj0b—jCm—i,

[bicm_i, C_jbj] = bicm_ic_jbj — c_jbjbicm_l-
= bicm_i (1 - bjC_j) — (1 - bjC_j) bicm_i
= biem=i — bicm—ibjc—j — biem=i + bjc_jbiCr—;
= —b; (6j4m—i,0 — bjcm—i)c—j +bj (6i—j.0 — bic—;) Cm—i
= bibjcm_ic_j — bjbic_jcm_i + 5¢_j70bjcm_i — (Sj+m_i70bic_j

= 0i—j,0bjCm—i — 0j_iym,0bic_;.
e The results above are only valid only up to a constant, Ad,, _, . Therefore, the L,, satisfy the algebra
[Lm7 Ln] = (m - ’I’L) Lern + A6m77n

for an undetermined constant A.

To determine A, we act with [L,,, L_,,] on the physical state |¢)) that is annihilated by b,~0 and ¢,>¢. Taking m > 0,
L_,, L)) =0 and

A|¢> = [Lm»Lfm] W}> - 2mLOW’>
= LinL_p|9) + 2m[1)

_ 3
(m B 2m) )

where the central charge is ¢ = —26. We have also used the following:

Loltp) = =|v) + Y i (b—sci + coibi) [9) = =[v) + Y b)) + Y icbilv)) = —|4)
i>1 i>1 i>1
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Lin Loty = (2m =) (=2m = §) bicm—i bjc_m—;|¥)
——

I 40 if —m+1<5<0

= Z Z (2m —14) (—2m — ) bicm—ibjCc—m—j|0)

—m+1<5<0 i

Z Z (2m — 1) (=2m — j) (Om—i+4,0 (Oi—m—35.0 = C—m—3bi) — (=bjbi) (—C—m—jcm—i)) )

—-m+1<5<0 @
= Z Z (2m — i) (=2m — j) ((6i,m+j)2 = 0ij+mCom—jbi — i j4mbjCm—i + bjc—m—jbicm—i) )
—-m+1<5<0 4
= > (m=i2m—=)delt) = Y (m—j)(=2m =) (comsbjrm +bjc;) [)
—m+1<j<0 —m+1<5<0
+ YD @m—i)(=2m =) bjcomjbicm—il¢)
—my1<j<0 i T
= > m=HE2m-i) - D> (m—j)(=2m—j) | cemjbjaml) +  bje_;|¥)
. . —_—— N——
—mt1<5<0 —mt1<5<0 0 for —m+1<5<0 0 for —m+1<j<0
= > (m-i)(=2m-j))
—m+1<5<0
_m-— 13m?
N 6

14



	Problem 1
	Part (a) 
	Part (b) 

	Problem 2 (2.8 of JBBS) 
	Problem 3 (4.1 of JBBS)
	Problem 4
	Problem 5

