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Problem 1

a) Find the Möbius transformation that takes three given points z1, z2,z3 into specified new positions z′1, z
′
2, z

′
3.

b) Show that the 4-tachyon integral
∫

d2z |z12z13z23|2
∏

i<j

|zij |α
′ki·kj

is independent of the choice z1,2,3 by considering the effect of a Möbius transformation on the terms in the integral.
You will need to use momentum conservation and the mass-shell condition.

Part (a)

To solve this problem it is easiest to make two Möbius transformations: {z1, z2, z3} →
f

{0, 1,∞} →
g

{z′1, z′2, z′3}. The

function

f(z) =

(

z2 − z3
z2 − z1

)(

z − z1
z − z3

)

maps the points {z1, z2, z3} to {0, 1,∞}. Next, the function

g(z) =
(z′3z

′
2 − z′3z

′
1) z + (z′1z

′
3 − z′1z

′
2)

(z′2 − z′1) z + (z′3 − z′2)

maps the points {0, 1,∞} to {z′1, z′2, z′3}. Therefore, the composite function g ◦ f

(g ◦ f) (z) =
(z′3z

′
2 − z′3z

′
1)
(

z2−z3
z2−z1

)(

z−z1
z−z3

)

+ (z′1z
′
3 − z′1z

′
2)

(z′2 − z′1)
(

z2−z3
z2−z1

)(

z−z1
z−z3

)

+ (z′3 − z′2)

=
(z′3z

′
2 − z′3z

′
1) (z2 − z3) (z − z1) + (z′1z

′
3 − z′1z

′
2) (z2 − z1) (z − z3)

(z′2 − z′1) (z2 − z3) (z − z1) + (z′3 − z′2) (z2 − z1) (z − z3)

takes {z1, z2, z3} →
g◦f

{z′1, z′2, z′3}.
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Part (b)

The 4-point tachyon amplitude is

M =

∫

d2z4 |z12z13z23|2
∏

i<j

|zij |α
′ki·kj .

Using conservation of momentum, k1+ k2+ k3 + k4 = 0, and the mass shell condition, k2i = 4/α′, we obtain the kinematic
relations

k1 · k2 = k3 · k4
k1 · k3 = k2 · k4
k2 · k3 = k1 · k4

k3 · k4 = −
4

α′
− k1 · k4 − k2 · k4.

Substituting the above into the 4-point tachyon amplitude, we obtain

M =

∫

d2z4 |z12z13z23|2 |z12|α
′k1·k2 |z13|α

′k1·k3 |z23|α
′k2·k3 |z14|α

′k1·k4 |z24|α
′k2·k4 |z34|α

′k3·k4

=

∫

d2z4 |z12z13z23|2 |z12|α
′k3·k4 |z13|α

′k2·k3 |z23|α
′k1·k4 |z14|α

′k1·k4 |z24|α
′k2·k4 |z34|α

′k3·k4

=

∫

d2z4 |z12z13z23|2 |z13|α
′k2·k4 |z23|α

′k1·k4 |z14|α
′k1·k4 |z24|α

′k2·k4

× |z12|−4−α′(k1·k4+k2·k4) |z34|−4−α′(k1·k4+k2·k4)

=

∫

d2z4

(

∣

∣

∣

∣

z13z23
z12

∣

∣

∣

∣

2

|z34|−4

∣

∣

∣

∣

z23
z12z34

∣

∣

∣

∣

α′k1·k4
∣

∣

∣

∣

z13
z12z34

∣

∣

∣

∣

α′k2·k4

)

|z24|α
′k2·k4 |z14|α

′k1·k4

= lim
z3→∞

∫

d2z4

(

|1/z3 − 1|2
∣

∣

∣

∣

z3
z3

∣

∣

∣

∣

4 ∣
∣

∣

∣

1

1− z4/z3

∣

∣

∣

∣

4 ∣
∣

∣

∣

1/z3 − 1

1− z4/z3

∣

∣

∣

∣

α′k1·k4
∣

∣

∣

∣

1

1− z4/z3

∣

∣

∣

∣

α′k2·k4

)

|1− z4|α
′k2·k4 |z4|α

′k1·k4

=

∫

d2z4 |1− z4|α
′k2·k4 |z4|α

′k1·k4

where we have used a Möbius transform to take {z1, z2, z3} → {0, 1,∞}. Note that the Möbius transformation f :
{z1, z2, z3} → {0, 1,∞} leaves all z /∈ {0, 1,∞} invariant

f(z) = lim
{z1,z2,z3}→{0,1,∞}

(

z2 − z3
z2 − z1

)(

z − z1
z − z3

)

= lim
z3→∞

(

1/z3 − 1

1

)(

z

z/z3 − 1

)

= z.

Problem 2

Show that the residue of the pole in the Virasoro-Shapiro amplitude at M2 = 4(N − 1)/α′, for integer N , is a polynomial
in t − u ∝ cos θ. Compare the order of the polynomial with the maximum spin of a string state at that level (e.g., the
maximum eigenvalue of the rotation J12). If you plot the spin versus mass-squared, what is the slope? (This is the closed
string version of problem 6.5a of JBBS and is done in Headrick).
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The Virasoro-Shapiro amplitude is given by

M = 2π
Γ (−1− α′s/4)Γ (−1− α′t/4)Γ (−1− α′u/4)

Γ (2 + α′s/4)Γ (2 + α′t/4)Γ (2 + α′u/4)

where

s = − (p1 + p2)
2 = E2

cm

t = − (p1 + p3)
2 =

(

4m2 − E2
cm

)

(1− cos θ)

u = − (p1 + p4)
2 =

(

4m2 − E2
cm

)

(1 + cos θ)

s+ t+ u = 4m4

are the Mandelstam variables for 2 → 2 scattering with p1, p2 incoming and p3, p4 outgoing, and m2 = −4/α′ is the mass
of the closed string tachyon. Since the inverse Gamma function is entire (Γ−1(z) is holomorphic for all z ∈ C), the poles
of M come from the factor Γ (−1− α′s/4) in the numerator (here, t is held fixed). The poles in sare when

−1−
4

α′
s = −N ∈ N =⇒ s =

4

α′
(N − 1) .

This represents the exchange of a particle in the s-channel of invariant mass M2 = 4 (N − 1) /α′. Setting s = 4(N−1)/α′,
the Mandelstam variables satisfy

s+ t+ u = 4m2

=⇒ t+ u =
(

4m2 − s
)

= −
4

α′
(N + 3) .

Since the residue of the Gamma function at each negative integer is given by

Res[Γ(z); z = −n ∈ N] =
(−1)n

Γ(n+ 1)
,

the residue of M at M2 = 4 (N − 1) /α′ is

Res

[

M; s =
4

α′
(N − 1) : N ∈ N

]

∝
(−1)N

Γ (N + 1)

[

Γ (−1− α′t/4)Γ (−1− α′u/4)

Γ (2 + α′s/4)Γ (2 + α′t/4)Γ (2 + α′u/4)

]

s= 4

α′
(N−1)

=
(−1)N

Γ2 (N + 1)

Γ (−1− α′t/4)Γ (−1− α′u/4)

Γ (2 + α′t/4)Γ (2 + α′u/4)
.

To show that the above is a polynomial in t− u, we want to write t and u in terms of q = t− u

t =
1

2
(t+ u) +

1

2
(t− u) = −

4

α′

(N + 3)

2
+

q

2

u =
1

2
(t+ u)−

1

2
(t− u) = −

4

α′

(N + 3)

2
−

q

2
.

Expanding the gamma functions we see that the amplitude is a polynomial in q

Res

[

M; s =
4

α′
(N − 1) : N ∈ N

]

∝
(−1)N

Γ2 (N + 1)

Γ
(

−1−
(

− (N+3)
2 + α′

4
q
2

))

Γ
(

−1−
(

− (N+3)
2 − α′

4
q
2

))

Γ
(

2 +
(

− (N+3)
2 + α′

4
q
2

))

Γ
(

2 +
(

− (N+3)
2 − α′

4
q
2

)) (1)

=
(−1)N

Γ2 (N + 1)

Γ
(

1
2N + 1

2 − α′

4
q
2

)

Γ
(

1
2N + 1

2 + α′

4
q
2

)

Γ
(

− 1
2N + 1

2 + α′

4
q
2

)

Γ
(

− 1
2N + 1

2 − α′

4
q
2

) (2)

∼
(−1)N

(N !)2
q2N + terms of lower powers of q
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where

Γ
(

1
2N + 1

2 − α′

4
q
2

)

Γ
(

− 1
2N + 1

2 − α′

4
q
2

) =

(

1

2
(N − 1) +

1

2
−

α′

4

q

2

)(

1

2
(N − 2) +

1

2
−

α′

4

q

2

)

. . .

(

−
1

2
N +

1

2
−

α′

4

q

2

)

Γ
(

1
2N + 1

2 + α′

4
q
2

)

Γ
(

− 1
2N + 1

2 + α′

4
q
2

) =

(

1

2
(N − 1) +

1

2
+

α′

4

q

2

)(

1

2
(N − 2) +

1

2
+

α′

4

q

2

)

. . .

(

−
1

2
N +

1

2
+

α′

4

q

2

)

.

Since the exchange of an s-channel particle of spin-J will give a spin-J spherical harmonic (a degree J polynomial of
cos θ ∝ q) the amplitude will be proportional to tJ . Comparing with equation (1), we see that J = 2N . As a function of
J , the invariant mass of the s-channel exchange particle is a straight line with slope of 2/α′ and intercept of the invariant
mass squared of the tachyon

M2 =
2

α′
J −

4

α′
=

2

α′
J +m2.

Problem 3

a) There are three terms in the Veneziano amplitude; focus on the one that has poles in s and t. Identify the residue
of the pole at t = 0. Show that this residue is the same as you would get in field theory from exchange of a photon
between two charged scalars, and use this to determine the gauge coupling in terms of go.

b) Show that the term that has poles in u and t makes an equal and opposite contribution to this residue.

c) So far this is without Chan-Paton factors; show that the cancelation is no longer present with these, and find the
result.

Part (a)

The Veneziano amplitude is given by

MVeneziano =
2ig2o
α′

(

Γ (−1− α′u)Γ (−1− α′t)

Γ (2 + α′s)
+

Γ (−1− α′s)Γ (−1− α′t)

Γ (2 + α′u)
+

Γ (−1− α′s)Γ (−1− α′u)

Γ (2 + α′t)

)

.

The term with s, t poles is

Mst =
2ig2o
α′

Γ (−1− α′s)Γ (−1− α′t)

Γ (2 + α′u)
.

To extract the residue at t = 0, it pays to rewrite M in order to make the t = 0 pole explicit

Mst =
2ig2o
α′

Γ (−1− α′s)Γ (α′t)

Γ (−2− α′s− α′t) (−1− α′t)
.

It is now clear that the pole at t = 0 comes from Γ (α′t). The residue at t = 0 is therefore given by

Res [Mst; t = 0] =
2ig2o
α′

Res [Γ (α′t) ; t = 0]

[

Γ (−1− α′s)

Γ (−2− α′s− α′t) (−1− α′t)

]

t=0

=
2ig2o
α′

(

−
1

α′

)

Γ (−1− α′s)

Γ (−2− α′s)

=
2ig2o
α′

(−2− α′s)

=
2ig2o
α′

(

2

α′
+ s

)

.
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p3

p4

p1

p2

Figure 1: t-channel single photon exchange amplitude.

q

γ
νµ =

−i

q2 + iϵ

[

gµν − (1− ξ)
qµqν
q2

]

p1

p2

γ, µ

φ

φ∗

= −ie(p1 − p2)
µ

Figure 2: Relevant Feynman rules for calculating the single photon exchange amplitude.

Next, we look at t-channel single photon exchange in scalar QED (Figure 1). In the Feynman gauge ξ = 1, the amplitude
of Figure 1 becomes

Mt-channel φφ→φφ = (−ie) (p1 − p3)
µ

[

−igµν

(p1 + p3)
2

]

(−ie) (p2 − p4)
ν

= −
ie2

t
(p1 − p3) · (p2 − p4)

= −
ie2

t
(p1 · p2 − p3 · p2 − p1 · p4 + p3 · p4)

= −
ie2

t
(2p1 · p2 − 2p1 · p4)

= −
ie2

t

((

2m2 − s
)

−
(

2m2 − u
))

= −ie2
(u− s)

t

where the relevant Feynman rules are given in Figure 2. The t = 0 residue of the above amplitude is

Mt-channel φφ→φφ = −ie2 (u− s) =
(

4m2 − t− s
)

t→0
− s = 4m2 − 2s

where m is the mass of the scalars. Setting the scalar mass equal to the (open string) tachyon mass, m2 = −1/α′ we
obtain

Mt-channel φφ → φφ = −ie2 (u− s) = −ie2
(

−
4

α′
− 2s

)

= 2ie2
(

2

α′
+ s

)

.

Evidently, the t = 0 residue of the t-channel scalar QED amplitude, Mt-channel φφ → φφ, and the t = 0 residue of Mst

match if
2ig2o
α′

= 2ie =⇒ go =
√
eα′.
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Part (b)

The term with u, t poles is

Mut =
2ig2o
α′

Γ (−1− α′u)Γ (−1− α′t)

Γ (2 + α′s)

=
2ig2o
α′

Γ (−1− α′u)Γ (α′t)

Γ (−2− α′u− α′t) (−1− α′t)
.

Its residue at t = 0 is

Res [Mut; t = 0] =
2ig2o
α′

(

−
1

α′

)[

Γ (−1− α′u)

Γ (−2− α′u− α′t)

]

t=0

= −
2ig2o
α′

(

1

α′

)

Γ (−1− α′u)

Γ (−2− α′u)

= −
2ig2o
α′

(

1

α′

)

(−2− α′u)

=
2ig2o
α′

(

2

α′
+ u

)

.

At t = 0, the Mandelstam variables satisfy s+ u = 4m2 = −4/α′. Writing the residue of Mut in terms of s, obtain

Res [Mut; t = 0] = −
2ig2o
α′

(

2

α′
+ s

)

= −Res [Mst; t = 0] .

Part (c)

Recall that there were six cyclic ordering in the computation of the Veneziano amplitude given in Figure 6.3 of JBBS. If
one includes Chan-Paton factors, the overall factor of 2 in the Veneziano amplitude from the addition of the six cycles is
replaced by the trace over a sum of Chan-Paton factors. With ai the Chan-Paton index for the ith tachyon, the Veneziano
amplitude becomes

MVeneziano =
2ig2o
α′

[

Tr (λa1λa2λa4λa3 + λa1λa3λa4λa2)
Γ (−1− α′u)Γ (−1− α′t)

Γ (2 + α′s)

+ Tr (λa1λa3λa2λa4 + λa1λa4λa2λa3)
Γ (−1− α′s)Γ (−1− α′t)

Γ (2 + α′u)

+Tr (λa1λa2λa3λa4 + λa1λa4λa3λa2)
Γ (−1− α′s)Γ (−1− α′u)

Γ (2 + α′t)

]

.

The t = 0 residues are modified to be

Res [Mst; t = 0] =
2ig2o
α′

(

2

α′
+ s

)

Tr (λa1λa3λa2λa4 + λa1λa4λa2λa3)

Res [Mut; t = 0] = −
2ig2o
α′

(

2

α′
+ s

)

Tr (λa1λa2λa4λa3 + λa1λa3λa4λa2) .

The total residue at t = 0 is therefore

Res [MVeneziano; t = 0] =
2ig2o
α′

(

2

α′
+ s

)

Tr (λa1λa3 [λa2 ,λa4 ] + λa1 [λa4 ,λa2 ]λa3)

=
2ig2o
α′

(

2

α′
+ s

)

Tr ({λa1 ,λa3} [λa2 ,λa4 ])

̸= 0.
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