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Why think about mass loss?

It may not be obvious why we would worry about mass loss
in Type | X-ray bursts since

MeV GM MeV
< — ~ 200

nuc R nuc

E .~ ({-=5)

SO can unbind at most ~1% of the accreted mass
(we’ll see later that ~0.1% more realistic)

but...



Why think about mass loss?

...it could have important implications:

e eject heavy elements made in the burst => nucleosynthesis

e absorption features from heavy elements at the photosphere

—> measure redshift
—> identify nuclear burning (rp-process) products
—> test burst physics, reveals the composition layer by layer

e pollute the companion or disk?
e.g. O, Ne in ultracompact X-ray binaries (Weinberg et al. 2006)

e a significant amount of the burst energy can go into ejecting mass
=> affects interpretation of burst energetics



Why now?

* |ots of recent work on using photospheric radius expansion bursts to
get neutron star mass and radius constraints

van Paradijs (1979), Ozel et al., Steiner et al., Poutanen, Suleimanov et al.

relies on understanding the evolution of the photosphere during the
burst, in particular identifying “touchdown”

e observational evidence for absorption edges

superexpansion bursts  in’t Zand & Weinberg (2010)

HETE J1900 Kajava et al. (2017)

Barriere et al. (2015) NUSTAR observations of GRS 1741.9-2853
(5.5 keV absorption line @1.7 sigma)

e long Type | X-ray bursts (superbursts and intermediate duration
bursts) with Eddington phases that last for minutes!

* large observational databases of PRE bursts to compare against

e new capability in NICER to study < 1 keV part of the X-ray spectrum
=> see expanded phases? Keek et al. (2018) burst from 4U 1820-30
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4U 0614+09 at 2.5 s / Black body + reflection fit
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In most bursts, expansions are << 100km
are we seeing expanded atmospheres?
truncation of winds by heavy elements?
Time (sec) (In t Zand & Weinberg 2010)

color correction?
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Figure 1. Photon count rate as a function of time in the 0.3-9 keV passband at
30 ms resolution. The top of the shaded region marks the 3-9 keV count rate
for comparison (scaled by a factor of 5). The dotted line indicates the persistent
count rate measured at the end of the observation. On top, three time intervals
are indicated for spectroscopy (Figure 2).

Keek et al. (2018) NICER observations of 4U 1820-30



This talk

* how mass loss works
* heavy element transport by convection

Where next: coupled burst and wind calculations

* mass loss in cooling models and comparison with
superexpansion bursts

e first results from MESA



How mass loss works

* key thing is the suppression of electron scattering opacity
at high temperature

T 0.86 -1
kK, =02 x [1+ ( ) } Paczynski (1983)
¢ 4.5 x 108
L .
=> X K increases outwards
Lgqq

=> can be sub-Eddington in the burning layer, but super-
Eddington at the photosphere

cg 4rGMc
* GR has the same effect: Fpyy=— = Lgy= (1+2)
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(1)

photosphere
L < LEdd,ph

(i1)

photosphere
L ~ LEdd

expanded envelope
in hydrostatic
balance

burning layer
L < LEddb

burning layer
LEddb <L < LEdd,

(iii)
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outflow with
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Models of PRE burst winds

wind speed v, ~ 0.0lc => 7o /v, S 1s

motivates quasi-steady approach

optically thick wind, Newtonian gravity:
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Models of PRE burst winds

Optically |Newtonian? |Steady? H/He only?

thick?
Ebisuzaki et al. (1983), , Kato Y Y Y Y
(1983), Quinn & Paczynski (1985)
Paczynski & Prosynski (1986) Y N Y Y
Joss & Melia (1987) N Y Y Y
Nobili, Turolla, Lapidus (1994) N N Y Y
Yu & Weinberg (2018) Y Y N N

Paczynski & Anderson (1986) extended atmospheres in GR
Spectra of expansion phase: Titarchuk (1994), Shaposhnikov & Titarchuk (2002)



How far out can convection transport heavy elements?

He,
0.1 MEgg
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- Joss (1976) pointed out that the
convection zone cannot reach
the photosphere (entropy of
burned material < entropy of
photosphere)
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Compare the rate of change of
entropy in the convection zone an
radiative zones:
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Growth of the convection zone including nuclear reactions

Weinberg, Bildsten & Schatz (2006)

L He0.01

.

-I-l|e10:2I _I_— IHIeIOIJQ 1 1 1 1

HeO.1b

1 l 1

Mass Fraction

0 0.5

1

1.5

2

Base Temperature (10° K)

Column Depth (g cm™2)



Next step: Coupled burst and wind calculations

Three approaches:

e include mass loss due to the super-Eddington wind
- place the top of the grid deep enough so that radiation
pressure sub-dominant / luminosity is < Eddington
- the mass loss rate is set by comparing the luminosity at the
top of the grid with the Eddington luminosity at infinity
- can follow composition being ejected over time

e use steady-state wind models as an outer boundary condition
for the stellar evolution code
- locate the grid outer boundary below the depth where wind is
generated (v>0)
- can predict e.g. photospheric radius as a function of time
- might want to compute on the fly to use correct composition

e extend the grid outwards and follow the time-dependent
burning layer and wind simultaneously

see the paper by Yu & Weinberg (2018) that just came out!



Cooling models for He flashes: heat the layer at the beginning and let it cool
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Opacities in Type | X-ray bursts
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0.2 Eddington
0.4 MeV/nuc

Simulations with
MESA star, including
prescription for super
Eddington wind
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Yu & Weinberg (2018)
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Absorption edges appear ~ 15 seconds
into the 30 second Eddington phase
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Conclusions

photospheric radius expansion bursts with mass loss can tell us a lot
about Type | X-ray burst physics, as the wind “peels away” the burning
products laid down by convection

more work needed to couple burst simulations with wind models

even with existing models, there are more comparisons that we can do
with data on PRE’s

if you’re working with MESA, check radiative opacities for heavy elements

open questions:
- what effect do heavy elements have on the wind structure, spectrum
- need predictions for specific elements, e.g. Fe-peak will take longer
to emerge, will only be there for more energetic bursts
- beyond 1D?
- does the timing of the HETE J1900 observations make sense
(edges seen ~ 1/2 through the Eddington phase)



