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This talk

Motivation: The source of shallow heating is a major
unsolved problem: unknown extra parameter in cooling
curve fits (often dominates deep heating!); also crucial for
nuclear burning

Outline:

* Evidence for shallow heating: crust cooling,
long Type | X-ray bursts

e Different energy sources in the outer layers of
accreting neutron stars - what shallow heating
probably is not, and what it might be

* Discussion points: Theory to-do list and what
we can look for observationally



Early-time cooling curves imply a hot outer crust with an
inwards heat flux
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Deep crustal heating is not enough to explain the
properties of long Type | X-ray bursts

Deibel et al. (2016)

* The outwards heat flux from the crust determines (b) Superburst ashes 2.0
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The shallow heat source has to turn on and off quickly

* The heat flux inferred from X-ray burst or superburst ignition is
>> the quiescent flux Galloway & Cumming (2006)

e.g. KS1731-260 L, <10 ergs™ = 0, <0.02MeV@10'" g s~

~ 30 times smaller flux in quiescence than when accreting

e.g. SAX J1808 fits to recurrence times of X-ray bursts
= 0,~03MeV=>Lx2x10*ergs™!

> 1000 times larger than the flux in quiescence!
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The shallow heating strength can be similar or different
between outbursts

* MAXI J0556-332: extremely
strong heating in first outburst,
but much smaller in second and
third (smaller) outbursts

Parikh et al. (2017)

XTE J1701-462 had very similar
outbursts properties to MAXI J0556
outburst |, but much smaller

shallow heating!
Page & Reddy (2013)

e New outburst of MXB 1659-29:
same heating predicts the
observed decline!

Parikh et al. (2019)

Table 2
Shallow Heating Parameters from NSCoo 1
Outburst th Psn
(MeV nucleon 1) (< 10? gcm 3 )
I 17.0722 5.3102
I 0
22 +0.7 33.5 4+ 08
[11 0.33 +0.03 1.6 1.3
® After outburst |
140 @ After outburst Il | 140
-120
-100
- 80
- 60
40 4 40
10° 9 & 10? 10°

Time Since End of Outburst (days)



Energy sources in an accreting neutron star
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Energy sources in an accreting neutron star
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Low density nuclear reactions

See Meisel et al. (2018) for a review
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pairing energy => even-even to odd- A
odd nucleus gives ~ 22 MeV /A3/2

* Low density fusion reaction

240 + 240 Q = 0.52 MeV
p~ 10" g cm™
oxygen ions in interstitial sites

Horowitz et al. (2008)

* URCA cooling reactions associated with
odd-A nuclei => neutrino cooling

Schatz et al. (2014), Deibel et al. (2015, 2016)

Horowitz et al. (2008)

* neutron transfer reactions involving odd-A
nuclei in outer crust chugunov (2019)



Chemical separation changes heat transport in the ocean

composition heat
flux flux
ocean floor
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Signature of chemical separation

at early times during cooling

* After an outburst, the ocean
refreezes as the star cools down

Fconv ~ _1025 crg cm y14

2 i 5/4(83/811]}()_1

10 days

Medin & Cumming (2014)

* |nwards heat flux acts as “latent
heat”; ocean cools rapidly; large
portions of the ocean can freeze
and unfreeze; eventually returns to
the “standard” cooling curve

* Rapid redistribution of light
elements during ocean freezing:
could affect the Tef-Tp relation

» Potentially complicates
interpretation of early time data
(e.g. to measure shallow heating)
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Shear heating

* How does matter accreting through a disk

join the star and spread over the stellar
surface?

» Kinetic energy of incoming matter

1 GM MeV
——1?% = —=~ 100
2 2R

nuc

1-10% of this would be enough to
explain the shallow heating we see

e Studies of how matter spreads suggest it
happens at low density

* Wave transport could perhaps deposit
energy deep
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momentum into the star

* Angular momentum transport by

Accumulating layer is close to rigid

hydrodynamic instabilities + Taylor-

Spruit dynamo prescription

Piro & Bildsten (2007),
see also Fujimoto (1993)

rotaiton; very little viscous heating

Q/2m (Hz)

2281 T T TTTT

ges.9

cea.8 T

C vl vl

IIIII| T T T
0=0.10,

1 Il‘-lllll | lJlIJll] L]

108

107 108 109 1010
Column Density (g em™2)

1011

].O I IlIIEiI]

How much shear is needed to carry the angular

2 0.1
T 0.01
~£0.001

[a—y
=

0.0
0.001
0.0001

(Y
= G

0.01
0.001
0.0001 &

dE/dlny (keV nuc™)

q=dInQ/dlnr
o
/
!/

&)
—_—
!
I
I
I
I

(L IIHII]

1 E 0=0.1Q,

11 IIIlII|

I IIIHII] I IIIITII]

T TTTITH

: o
| I:IIIIII| 1III|Il| I W |

10 10*

10% 1Q°

1010 1011

Column Density (g cm™?)



Spread of matter over a neutron star surface

Inogamov & Sunyaev (2010)
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* Argued that the entire ocean can be spun up by gravity wave transport of

angular momentum

e |eads to strong (10’s of MeV) heating at depth; could be truncated by excitation

of large solitary gravity wave



Heating associated with the ocean-crust interface mode

e Crust-ocean interface mode involves

horizontal motions of the entire ocean
e Boundary layer width: 5 (Z) 1/2
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Thermal profiles with shallow heating at the ocean floor

109_| I I L O L I B B I B B R

i Qshallow = 10 MeV/nuc-

- Qout=0.41 MeV/nuc -

< - 0.18 3 .

= | 0.10 >
1

S 0.044
K 108_ 0.3 .
RN RN AN NN N BN RN N .

102 10° 10 10'' 102 10'* 10™ 10'® 10'® 10V
Column depth (gcm?)

Increased shallow heating => deeper ocean => larger fraction of the

heatlng goes inwards Deibel & Cumming, in prep



Acoustic waves are excited in the accretion disk boundary layer

e Sonic instability excites acoustic
waves in the boundary layer

* Play a key role in angular momentum
transport in the boundary layer
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Nuclear Burning Phenomenology of Accreting Neutron Stars

a) hard (island) 7 //

HOT FLOW

regular bursting (mixed H/He,
pure He ignition, pure He
bursts)

significant color correction
evolution during bursts

b) soft (banana)

stable burning; irregular bursting

superbursts

mHz QPOs
burst oscillations

color correction almost
constant during burst

What role does shallow heating (and/or geometry) play in this?
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Shallow heating: Points for discussion

Plenty of energy in the shear between the star and accreted
material. We are used to thinking of the accretion energy being
immediately radiated away; perhaps a small fraction (1-10%) is
transported inwards.

Wave transport could perhaps deposit energy deep; details (and
predictability) not clear

Timing: could respond quickly to changes in accretion rate; could be
a lag

Similar outbursts but different shallow heating: perhaps the NS spin
is different between sources?

Important to think about the connection with nuclear burning.
Examples: (1) with shallow heating as large as MAXI, H/He burning
should be completely stable.



