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Abstract. We have used high-resolution neutron powder diffraction over the temperature range
9–65 K to determine the magnetic structure of ErFe11.5Ta0.5. Above 49 K the magnetic structure
is a collinear ferrimagnet with an easyc-axis. Below 49 K, the magnetization cants away from
thec-axis and eventually reaches a canting angle of 9.0(1.3)◦ from thec-axis, asT →0 K. This
behaviour may be understood in terms of the competition between different order terms in the Er3+

crystal-field Hamiltonian: the spin-reorientation away from thec-axis is driven by the 6th-order
crystal-field term.

1. Introduction

The ThMn12 structure is tetragonal with the space groupI4/mmm (#139). There are two
formula units (f.u.) per unit cell and the site occupancies are2afor Th and8f, 8iand8j for Mn.
This structure forms the basis for many series of iron-rich, rare-earth–iron intermetallic phases,
some of which become potential permanent magnet materials after interstitial modification with
nitrogen or carbon [1]. The R atom takes the place of Th and the Fe takes the place of Mn.
Unfortunately, binary RFe12 compounds do not form and a third element is required to stabilize
this structure. To date, RFe12−xMx compounds have been formed with M= Ti, V, Cr, Mn,
Nb, Mo, W, Re, Al and Si. Minimizing the M content while retaining the ThMn12 structure
is important as it maximizes the Fe content and thus the net magnetization of the phase. The
minimum M content is around 0.5–0.7 for M= Mo and Nb [2].

Recently, Piqueret al [3] reported on the preparation of RFe12−xTax compounds with
x ∼ 0.5. They found that this Ta-stabilized phase only forms with the heavier rare-earth
elements Tb, Dy, Ho, Er and Lu. Single-phase samples could not be produced and all samples
contained impurities, the most common beingα-Fe and Fe2Ta. The Curie temperatures of
the RFe11.5Ta0.5 compounds range from 499 K (R= Lu) to 576 K (R= Tb) and the easy
direction of magnetization at room temperature is the tetragonalc-axis for all R except Tb,
which is planar at room temperature. Magnetometry and ac-susceptometry work showed that
both ErFe11.5Ta0.5 and DyFe11.5Ta0.5 undergo spin-reorientations at 40 K for R= Er, and at
185 K and 265 K for R= Dy. This group also used x-ray diffraction to show that Ta occupies
the8i site [4].
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The RFe12−xTax compounds can accommodate interstitial elements as shown by Vertet al
[5], who studied HoFe11.4Ta0.6X0.6 with X = H and C. Both interstitials lead to a volume
expansion (1.0% with H and 2.9% with C), resulting in an increase in Curie temperature
from 526 K to 716 K and an increase in magnetization (at 4 K) from 11.4µB/f.u. to 13.0
µB/f.u. for HoFe11.4Ta0.6C0.6. Interestingly, a spin-reorientation at 118 K was observed for
HoFe11.4Ta0.6H0.6, although the parent HoFe11.4Ta0.6 shows no such behaviour.

Vert et al [6] also studied the phase compositions of samples as a function of Ta starting
content. They confirmed that single-phase samples do not form, with the usual impurities
beingα-Fe and Fe2Ta, as mentioned earlier. Furthermore, significant amounts (>15 at.%) of
hexagonal R2Fe17 can also form and a rather narrow Ta content range of 0.56 x 6 0.7 is
required to maximize the R(Fe,Ta)12 content.

From a fundamental point of view, the tetragonal R(Fe,M)12 compounds have provided
much useful information on (i) the crystal-field interactions at the R3+ ion, (ii) the R–Fe and
Fe–Fe exchange interactions and (iii) the complex interplay between the crystal-field and the
exchange. Much of this information has been deduced from the numerous spin-reorientations
which occur in the R(Fe,M)12 compounds at low temperatures. Such changes in the magnetic
structure of a compound are generally due to either (i) competition between the R and Fe
anisotropies and/or (ii) competition between the 2nd-, 4th- and 6th-order terms in the crystal-
field acting on the R3+ ion, with the higher-order terms playing a more significant role as the
temperature is reduced. Thus, the determination of both spin-reorientation temperatures and
canting angles of the magnetic structure has provided valuable data for the characterization of
both crystal-field and exchange interactions.

In this paper we present the results of our study of the spin-reorientation in ErFe11.5Ta0.5

using high-resolution neutron powder diffraction. Our results confirm the existence of a spin-
reorientation below 49 K, during which the magnetization gradually tips away from thec-axis,
reaching an angle ofθ = 9.0(1.3)◦ from thec-axis asT → 0 K.

2. Experimental methods

The ErFe11.5Ta0.5 sample was prepared by arc-melting stoichiometric amounts of the pure
elements under Ti-gettered argon. The sample was subsequently annealed at 900◦C for 2
weeks, sealed under vacuum in a quartz tube. Powder x-ray diffraction patterns were obtained
using Cu-Kα radiation on an automated Nicolet–Stoe diffractometer. Thermogravimetric
analysis (TGA) was carried out on a Perkin-Elmer TGA-7 in a small magnetic field gradient to
determine the magnetic ordering temperature. ac-susceptibility was measured on a Quantum
Design PPMS system at a frequency of 377 Hz with an ac magnetic field amplitude of
398 A m−1.

Neutron powder diffraction experiments were carried out on∼ 4 g samples on the
DUALSPEC C2 high-resolution powder diffractometer located at the NRU reactor, Chalk River
Laboratories, Ontario, operated by Atomic Energy Canada Ltd. The neutron wavelength was
2.3688(1) Å. A detailed review of the neutron scattering facilities at Chalk River, including a
description of C2, can be found in [7]. A total of 15 diffraction patterns were obtained over
the temperature range 9–65 K and all diffraction patterns were analysed using the Rietveld
method with the FULLPROF program [8].

3. Results and discussion

It proved impossible to prepare single-phase ErFe11.5Ta0.5 in agreement with the findings of
Vert et al [5, 6]. Our sample containedα-Fe and Fe2Ta in the amounts 3 wt.% and 4wt.%,
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Figure 1. TGA trace of ErFe11.5Ta0.5.

respectively, as determined from the fits to the neutron diffraction patterns.
In figure 1 we show the TGA trace of ErFe11.5Ta0.5, from which we derive a magnetic

ordering temperature of 541(5) K for ErFe11.5Ta0.5. The residual magnetic order of the impurity
α-Fe is clear. Fe2Ta is a Pauli paramagnet [9] and does not contribute to the TGA data.

In figure 2 we show the ac-susceptibility trace of ErFe11.5Ta0.5. The spin-reorientation is
clear with an onset temperature of 49(2) K and a peak temperature of 41(2) K.

In figure 3 we show neutron diffraction patterns of ErFe11.5Ta0.5 obtained at 65 K and
9 K, i.e., above and below the spin-reorientation temperature, respectively. Most of the 1:12-
stabilizing elements studied to date show preferential occupation of the8i site and our neutron
work confirms this for Ta. The refined Ta content in the 1:12 phase is slightly larger than the
nominal starting composition of Ta0.5, corresponding to ErFe11.38Ta0.62. The refined atomic
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Figure 2. ac-susceptibility of ErFe11.5Ta0.5.
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Figure 3. Neutron powder diffraction patterns of nominal ErFe11.5Ta0.5 at 9 K and 65 K.

and magnetic parameters are given in table 1. The refinement ‘R-factors (%)’ for all 15
patterns obtained during this study lie within the following ranges: R(Bragg) = 2.9–4.5,
R(F-structure)= 1.9–3.0, R(wp) = 9.4–12.1, R(exp) = 4.4–4.7 and R(mag) = 3.3–5.1.

Table 1. Lattice parameters, atomic positions, magnetic moments (inµB ), magnetization and
canting angle (degrees) of ErFe11.5Ta0.5 deduced from the neutron diffraction pattern obtained at
9 K.

a(Å) c(Å) x(8j) x(8i)
8.4847(5) 4.7747(3) 0.276(1) 0.359(1)

µ(Er) µ(Fe − 8f ) µ(Fe − 8j) µ(Fe − 8i)
8.35(17) 1.67(8) 1.89(9) 2.21(13)

M(µB/f.u.) θ Biso(Å2)
13.6(7) 8.9(11) 0.08(6)

In figure 4 we show the canting angle of the net magnetization of ErFe11.5Ta0.5 relative to
the crystalc-axis, derived from our neutron diffraction data.

The magnetocrystalline anisotropy of the R3+ sublattice in the R(Fe,M)12 compounds is
determined by the crystal-field Hamiltonian appropriate to the4/mmmpoint symmetry of the
R3+ site

Hcf = B20O20 +B40O40 +B44O44 +B60O60 +B64O64 (1)

where theBnm are the crystal-field parameters and theOnm are the standard Stevens spin-
operators [10].

From experiments on numerous R(Fe,M)12 systems it is well established that the Fe
sublattice has easyc-axis anisotropy over the entire magnetically-ordered temperature range.
Hu et al [11] have determined a set of crystal-field energy terms from a study of the
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Figure 4. Canting angle (in degrees) of the net magnetization of ErFe11.5Ta0.5 relative to thec-axis.

RFe11.35Nb0.65 series, and for ErFe11.35Nb0.65 in the limit T = 0 K they find: B20〈O20〉 =
−6.12 K, B40〈O40〉 = −11.4 K, B44〈O40〉 = 109 K, B60〈O60〉 = 23.0 K andB64〈O60〉 =
5.7 K. The axial or planar anisotropy is determined principally by the diagonal terms such
asB20〈O20〉, while the anisotropywithin the a–b-plane is determined by the off-diagonal
termsB44〈O40〉 andB64〈O60〉. The 2nd- and 4th-order diagonal crystal-field energy terms for
Er3+ are negative and thus favour easyc-axis anisotropy, whereas the 6th-order diagonal term
B60〈O60〉 is positive and favours easya–b-plane anisotropy. Hence, it is clear that the observed
spin-reorientation away from thec-axis observed in ErFe11.5Ta0.5 is driven by the 6th-order
crystal-field term acting on the Er3+ ion.

Finally, the rotational transformation properties of the spin-operatorsOnm in the above
crystal-field Hamiltonian (tabulated by Rudowicz [12]) may be used to show that the anisotropy
of the R3+ sublattice can be written in the phenomenological form [13]:

Ea = K1sin2θ + (K2 +K ′2cos 4φ)sin4θ + (K3 +K ′3cos 4φ)sin6θ (2)

whereθ andφ are the polar angles of the R3+ magnetization relative to the crystal axes. The
in-planetermsK ′2 andK ′3 are related to the crystal-field energy terms by

K ′2 =
1

8
[B44〈O40〉 + 5B64〈O60〉] (3)

K ′3 = −
11

16
[B64〈O60〉] (4)

and, if the relative magnitudes and signs of the crystal-field parameters deduced for the
Er(Fe,Nb)12 compound are applicable to Er(Fe,Ta)12, then the fact that both off-diagonal
terms in (1) are positive indicates that in the canted or tipped magnetic state the planar projection
of the net magnetization is along the [110] direction, a fact inaccessible to neutron diffraction
due to the tetragonal symmetry [14].
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4. Conclusion

ErFe11.5Ta0.5 is a collinear ferrimagnet with an ordering temperature of 541(5) K. The easy
direction of magnetic order is thec-axis in the temperature range∼50 6 T (K) 6 541. A
spin-reorientation commences at 49(2) K below which temperature the net magnetization
is canted away from thec-axis. Using high-resolution neutron powder diffraction we have
determined the temperature dependence of the canting angle and find a maximum canting of
9.0(1.3)◦ asT → 0 K. The neutron diffraction results also confirm that the Ta occupies the 8i

crystallographic site.
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