Intercluster coupling in site-frustrated random magnets

A. D. Beath^{a)} and D. H. Ryan

Physics Department and Centre for the Physics of Materials, McGill University, 3600 University Street, Montreal, Quebec H3A 2T8, Canada

(Presented on 8 January 2004)

The effects of intercluster coupling strength $(|J_{FA}|)$ on the ordering behavior of the site-frustrated Heisenberg model have been investigated. We find that following a weak initial increase, the lower temperature transition is driven to T=0 for $|J_{FA}|^* \sim 5.0(5)$, while the upper transition temperature appears to increase without limit. © 2004 American Institute of Physics. [DOI: 10.1063/1.1676111]

A simple, site-frustrated model of a magnetic system with competing interactions can be constructed by randomly decorating a lattice with ferromagnetic (F) and antiferromagnetic (A) sites to create a $F_{1-x}A_x$ solid solution. The sites are then coupled by nearest-neighbor exchange bonds of the form $J_{FF} = -J_{AA} = -J_{FA} = +1$. This model was originally introduced to study tetracritical points in binary magnetic alloys¹ and is directly relevant to the magnetic behavior of alloys containing two magnetic species, such as a $-Fe_{1-r}Mn_rG_v$ (Ref. 2), where G is a mixture of glassforming metalloids. Four clear results have emerged from a detailed Monte-Carlo study of the three-dimensional (3D) site-frustrated Heisenberg model on cubic lattices:³ (i) The sign of J_{FA} is irrelevant. A model with $J_{FA} = +1$ can be mapped onto one with $J_{FA} = -1$ by a series of gauge transformations. (ii) The system forms clusters of F and A sites, and all of the frustration resides on the interfaces between these clusters. (iii) As long as the concentration of F (or A) sites exceeds the relevant percolation threshold, ferromagnetic (or antiferromagnetic) order develops in the F (or A) percolating cluster through a conventional phase transition. (iv) Despite significant levels of frustration, the phase diagram (upper panel of Fig. 1) shows only ferromagnetic and antiferromagnetic ordering, ruling out the possibility of a conventional spin-glass phase. Ordering in this model therefore consists of largely independent F and A clusters coupled at their boundaries by the J_{FA} bonds. As only J_{FA} is expected to alter the phase diagram in a nontrivial fashion, we examine here the effects of varying J_{FA} from zero to values large enough to establish asymptotic behavior.

It is useful to first consider two simple limiting cases. Setting $J_{FA}=0$ decouples the *F* and *A* clusters entirely and the system breaks down into independent clusters of spins. As the lower panel of Fig. 1 shows, decoupling the two types of sites has very little impact: T_C and T_N are reduced slightly, but the overall form of the phase diagram is unchanged.⁴ The only feature that is lost when the limited frustration caused by $J_{FA} \neq 0$ is eliminated, is the mutually perpendicular ordering of the ferromagnetic and antiferromagnetic clusters.³ The similarities between the phase diagram.

^{a)}Author to whom correspondence should be addressed; electronic mail: beatha@physics.mcgill.ca

grams with $J_{FA} = 0$ and $|J_{FA}| = 1$ (Fig. 1) serve to emphasize the limited impact of frustration in site-frustrated models. Indeed, it is apparent in Fig. 1 that adding frustration actually leads to an *increase* in both T_C and T_N .

A second case is obtained by setting $J_{FF} = -J_{AA} = 0$ and $|J_{FA}| = 1$ in order to access the limit $J_{FA}/J_{FF,AA} \rightarrow \infty$. Here, only the F and A sites defining the cluster surfaces are coupled. When either or both of the F and A sites percolate, regular they form D-dimensional volumes with D-1-dimensional lattice-spanning surfaces of coupled sites, which could, in principle, order. However, finite-temperature ordering is only possible above a lower critical dimension D_{I} which, for Heisenberg spins⁵ is 2. Thus, for our simplified 3D model with only $J_{FA} \neq 0$, the 2D cluster surface orders at T=0. Taking this model with $J_{FF}=-J_{AA}=0$ as a guide to the behavior at large $|J_{FA}|$ (with $J_{FF} = -J_{AA} = +1$), we are led to expect that the initial increase in T_C and T_N with $|J_{FA}|$ eventually ceases, and that both transitions ultimately occur only at zero temperature. This simplified model neglects the role of $J_{FF,AA}$, and as we shall see below, these interactions preserve one of the finite-temperature transitions.

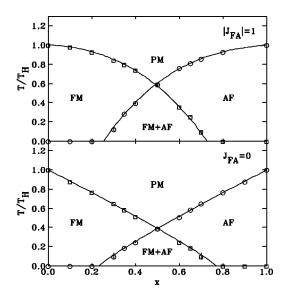


FIG. 1. Phase diagram for site frustrated models with $J_{FA}=1$ (top) and $|J_{FA}|=0$ (bottom) for a bcc lattice. Note that both T_C and T_N increase when $|J_{FA}|=1$ as compared to $J_{FA}=0$, despite frustration.

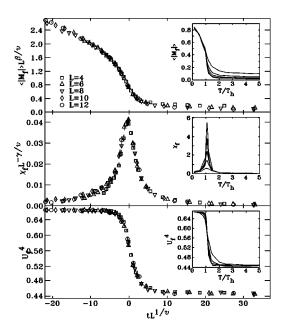


FIG. 2. Scaling plots of the magnetization (top), susceptibility (middle), and Binder cumulant (bottom), for $J_{FA}=2$ using 3D Heisenberg exponents.

To determine T_C and T_N , we use a Monte-Carlo method employing simple Metropolis dynamics. Detailed finite-sizescaling analysis allows extrapolation to the thermodynamic limit (details can be found elsewhere³). For the work presented here, we have chosen a concentration x = 0.4, where $T_N \sim 0.5 T_C$. We use a bcc lattice containing $N = 2L^3$ spins with several system sizes L = 4,6,8,10, and 12, which appear to be very close to the limit of asymptotic scaling (L_{\min}) $\sim 6-8$). Typical scaling plots in the vicinity of T_C , including unscaled data presented as insets, are shown in Fig. 2 for the magnetization M_f , susceptibility χ_f , as well as the Binder cumulant U_f^4 . For the scaled data we have used exponents from the 3D Heisenberg universality class:⁶⁻⁸ $\beta = 0.364$, γ =1.386, and ν =0.705. The values of T_C and T_N found using the extrema of several thermodynamic quantities,³ are used to construct the plot of $T_{C,N}$ vs $|J_{FA}|$, shown in Fig. 3. Clearly, the lower temperature transition (T_N for x < 0.5) vanishes for $|J_{FA}| > 5.0(5)$, while for all $|J_{FA}|$ the upper temperature transition (T_C for x < 0.5) is found to increase indefinitely and approximately linearly, beyond the point where T_N is observed to collapse. This linear increase simply reflects the linear dependence of the available exchange energy while increasing J_{FA} .

Our finding that T_N vanishes for $|J_{FA}| > 5.0(5)$ is supported by: (i) a lack of a finite-temperature peak in the staggered susceptibility which increases with L; (ii) a lack of a crossing of the Binder cumulant which remains at the high temperature limit $\frac{4}{9}$, except near T=0; and (iii) a scaling of the staggered magnetization M_{st} , which is found to scale, at both high and low T, as

$$M_{\rm st}(T,L) \propto L^{-3/2} \mathcal{M}(T). \tag{1}$$

The third observation is most significant, as Eq. (1) implies that in the thermodynamic limit $M_{st}=0$, this normally describes the behavior well above any ordering temperature. If finite *T* ordering occurred, M_{st} could not possibly scale ac-

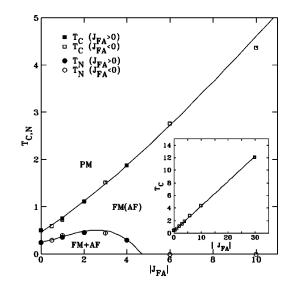


FIG. 3. T_C and T_N vs $|J_{FA}|$ $(J_{FF} = -J_{AA} = +1)$ for bcc lattice with x = 0.4.

cording to Eq. (1). Explicitly, for $J_{FA} = -10$, we find that $M_{\rm st} \propto L^{-\alpha}$ with $\alpha = 1.503(3)$ at $T = 15T_H$, and $\alpha = 1.45(10)$ at $T = 0.1T_H$. Together, these observations strongly suggest that for $|J_{FA}| > 5.0(5)$, the antiferromagnetic transition no longer occurs at any finite temperature.

To understand the initial rise and subsequent collapse of T_N with increasing $|J_{FA}|$, we turn to a simpler site-frustrated model for which exact ground states can be identified: Ising spins on 2D square nets. To determine the ground state, plaquettes (the smallest closed loop of connected spins) which are frustrated (only those plaquettes which contain two neighboring A sites and two neighboring F sites are frustrated in this model) are joined together with a line called a dual string. Bonds traversed by the dual string are unsatisfied while all remaining bonds are satisfied. For symmetric couplings (|J|=1), the ground state is that configuration which minimizes the total length of dual strings.⁹ When the couplings are asymmetric $(|J_{FA}| \neq 1)$, the contribution to the total length of the dual string by each element is weighted according to the magnitude of the bonds traversed: A dual string traversing one |J|=3 bond is energetically equivalent to a dual string traversing three |J| = 1 bonds.

The model with $J_{FA} = 0$ is equivalent to the model with $|J_{FA}| = 1$ [Fig. 4(a)], provided that (i) the dual strings are confined to the surfaces of F/A clusters and (ii) the total length of the dual strings encircling a cluster is exactly half of the cluster perimeter. With both of these criteria satisfied, a cluster of F or A sites can be flipped with no energy cost, as in the case where $J_{FA} = 0$. In general, this perfect cancellation does not take place, and finite clusters of A or F sites embedded within a percolating cluster of F or A sites will couple rigidly to the surrounding cluster [Fig. 4(b)]. This rigid coupling of an embedded cluster to the percolating cluster will effectively increase the total number of connected spins within the percolating cluster, as compared to the case with $J_{FA}=0$. This is equivalent to an increase in available exchange energy, and so both T_C and T_N initially increase with $|J_{FA}|$. However, when $|J_{FA}|$ increases beyond

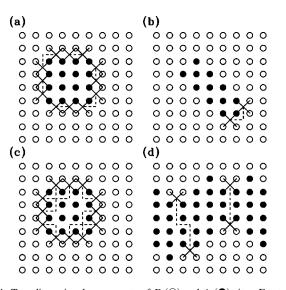


FIG. 4. Two-dimensional square nets of $F(\bigcirc)$ and $A(\bigcirc)$ sites. Frustrated plaquettes are denoted by a cross, while dual strings connecting frustrated plaquettes are denoted by a dashed line.

1, the optimal dual strings begin to migrate away from the cluster interfaces in order to avoid traversing the larger J_{FA} bonds, as depicted in Fig. 4(c). The linking of frustrated plaquettes now involves longer dual strings, which alters the effective volume of rigidly connected spins within a percolating cluster [compare Figs. 4(a) and 4(c)]. As $|J_{FA}|$ continues to increase, dual strings will eventually traverse the volume a percolating cluster, as depicted in Fig. 4(d), breaking the $J_{FA}=0$ ground-state order into domains. This fragmentation causes the percolating cluster to exhibit an order parameter $M_{f,st}$, which scales according to Eq. (1) at T=0. The critical value of $|J_{FA}|^{\star}$, where the transition temperature vanishes, corresponds to the value of $|J_{FA}|$, where the effective volume of the ordered cluster becomes zero. Domain formation, driven by dual strings passing through the volume of the otherwise $(J_{FA}=0)$ -ordered percolating cluster, causes the transition temperature to vanish at large $|J_{FA}|$. Indeed, 2D site-frustrated models with Ising spins show that with $|J_{FA}| = 1$ the value of x_c where T_C vanishes is increased, compared to the value of x_c when $J_{FA} = 0.^{10}$

Domain formation might be expected to cause the upper

transition (T_c here) to decline as well. To explain the continued increase we note that for 3D models in the regime $x_c < x < 1 - x_c$, the 2D lattice-spanning surface of the percolating F cluster is defined by the 2D lattice-spanning surface of the percolating A cluster. Since frustrated plaquettes, which act as sources and sinks of defect energy, are *shared* by A and F clusters, the least energetic (shortest, J_{FA} avoiding) path between frustrated plaquettes at the boundary of percolating A and F clusters is found through the smaller cluster. Only the smaller percolating cluster is expected to break into domains at large $|J_{FA}|$.

Our observations show that for values of $|J_{FA}| < J_{FA}^*$, the transition temperatures of both types of percolating clusters initially increase due to an increase in effective cluster size from embedded finite clusters. As J_{FA}^* is approached, domain formation leads to the destruction of the finite Ttransition for the smaller percolating cluster. Thus, in the limit $|J_{FA}| \rightarrow \infty$ the tetracritical point observed at $x = \frac{1}{2}$ evolves into a bicritical point where both T_N and T_C vanish simultaneously at x = 0.5 and T = 0. Alternatively, if both T_C and T_N vanish in the limit $|J_{FA}| \rightarrow \infty$ (this is not observed, but cannot be ruled out yet), then a gap will open in the center of the phase diagram where periodic ordering does not occur and spin-glass ordering might be possible.

This work was supported by grants from the Natural Sciences and Engineering Research Council of Canada, and Fonds pour la formation de chercheurs et l'aide à la recherche, Québec.

- ¹A. Aharony, Phys. Rev. Lett. 34, 590 (1975).
- ²D. H. Ryan, A. D. Beath, E. McCalla, J. van Lierop, and J. M. Cadogan, Phys. Rev. B **67**, 104404 (2003).
- ³A. D. Beath and D. H. Ryan, Phys. Rev. B (to be published).
- ⁴We normalize all transition temperatures to T_C of the pure (x=0) ferromagnet which for bcc lattices is T_C =2.054.
- ⁵N. D. Mermin and H. Wagner, Phys. Rev. Lett. **17**, 1133 (1966).
- ⁶K. Chen, A. M. Ferrenberg, and D. P. Landau, Phys. Rev. B **48**, 3249 (1993).
- ⁷C. Holm and W. Janke, Phys. Rev. B **48**, 936 (1993).
- ⁸J. C. Le Guillou and J. Zinn-Justin, Phys. Rev. B **21**, 3976 (1980).
- ⁹E. Fradkin, B. A. Huberman, and S. H. Shenker, Phys. Rev. B 18, 4789 (1978).
- ¹⁰N. Kawashima and H. Rieger, Europhys. Lett. **39**, 85 (1997).