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We determine the ferromagnetic phase boundary for the short range ±J bond frustrated Heisenberg
model in three dimensions using a very efficient Monte Carlo algorithm which eliminates the critical
slowing down usually experienced at a second order phase transition. The phase boundary is
identified by measuring the correlation length directly, a method which we show to be superior to
more conventional methods such as the crossing of the Binder cumulant. The critical concentration
of antiferromagnetic bonds beyond which ferromagnetism is lost isxc=0.208s2d. © 2005 American
Institute of Physics. fDOI: 10.1063/1.1851916g

The addition of antiferromagnetic bonds with concentra-
tion x to an otherwise ferromagnetic matrix introduces ex-
change frustration which leads to the eventual loss of ferro-
magnetic order at a critical concentrationxc. The mean field
phase diagram1 for the bond frustrated Heisenberg model is
typical of the effect of exchange frustration, as demonstrated
by the similarity with experimental phase diagrams.2 Despite
this agreement, little is known regarding the phase diagram
of the bond frustrated Heisenberg model in three dimensions.
Only a few Monte Carlo studies have addressed the existence
of the various phases, and disagreement exists even for the
ferromagnetic phase boundary. While Thomsonet al.3 found
xc=0.25, finite size effects were not taken into account. Mat-
subaraet al.4 have claimed that the actual value is much
smaller sxc=0.21d based upon poor scaling of the magneti-
zation using Heisenberg exponents atx=0.22. However, this
criteria is not the best one can think of considering that cor-
rections to scaling are probably quite important for the small
lattice sizes studied, especially asxc is approached. Here we
measure the correlation length directly for variousx using a
hybrid Monte Carlo method, demonstrating that this quantity
is very good for locating phase transitions, and we present
the ferromagnetic phase boundary.

The short range ±J bond frustrated Heisenberg model is
described by the Hamiltonian

H = − o
ki,jl

JijSi ·Sj = − o
i

Si ·Bi , s1d

where the sumki , jl runs over all nearest neighbor bonds
Jij = ±1 on a three-dimensional simple cubic lattice andBi is
an effective local field experienced at sitei due to coupling
with nearest neighbor, three dimensional, unit vector spins
Sj. TheJij are chosen to be quenched random variables with
probabilities PsJij = +1d=1−x and PsJij =−1d=x. We mea-
sure several thermodynamic quantities with a Monte Carlo
algorithm utilizing a mixture of Metropolis and
over-relaxation5 techniques, found elsewhere to produce a
very efficient algorithm for frustrated Heisenberg models.6

Following every Metropolis updatesone hit per lattice sited
we use five over-relaxation steps which evolve the spins ac-
cording to

Si → 2
Si ·Bi

Bi ·Bi
Bi − Si . s2d

The efficiency of this algorithm is determined by mea-
suring the time decay of a suitably normalized autocorrela-
tion function of the magnetizationM:

AMstd = fkMstdMs0dlg − fkMs0dlgfkMs0dlg, s3d

wherek l represents a thermal average andf g represents an
average over disorder. TheAM decays are discrete sums of
exponential decays,oiaie

−t/ti, and the largestti is the
asymptotic correlation timetA. The correlation times are
shown for various lattice sizesL in Fig. 1. Using conven-
tional Metropolis dynamics a critical slowing down is expe-
rienced as we approachTC, with a power law size depen-
dence of the formti ,Lz. Considering the magnetization to
be either a vector or scalar quantity, Metropolis dynamics at
temperatureT yields z=0,2 and 3 forT.TC,T,TC, and
T,TC, respectively. The hybrid algorithm by contrast yields
z,0 at all but the lowest temperatures and is thus very effi-
cient for this particular model. Using this algorithm we have

FIG. 1. Asymptotic correlation times vs temperature for various small sys-
tem sizes using both the Metropolis algorithm and a hybrid algorithm as
discussed in the text for the bond frustrated Heisenberg model atx=0.15.
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simulated the model for lattice sizesL=4, 6, 8, 10, and 12
for severalx andT using 500 independentf g samples and a
minimum of 500 independentk l sampless,43104 Monte
Carlo updatesd.

We determine several quantities used to study phase
transitions in disordered models.7 Those discussed here are
the following:

B =
1

2
S5 − 3

fkM4lg
fkM2lg2D , s4d

A =
fkM2l2g − fkM2lg2

fkM2lg2 , s5d

G =
fkM2l2g − fkM2lg2

fkM4lg − fkM2lg2 , s6d

as well as the ratioj /L, wherej is the correlation length to
be defined below. The four quantitiesX=B, A, G, andj /L
are dimensionless and so are expected to scale according to

X = XstL1/nd, s7d

where n is the exponent of the correlation lengthj and t
=sT−TCd /TC is the reduced temperature. Equations7d im-
plies that atTC, X=B, A, G, andj /L take universal,L in-
dependent, valuesX! such that a plot ofXsLd vs T exhibits a
crossing atTC for different L.

B is the commonly studied Binder cumulant,8 normal-
ized for the pure Heisenberg model. In the pure, disorder
free, model sx=0d the uniqueness of the ground state is
enough to ensure thatB scales according to Eq.s7d. How-
ever, for disordered modelsB may not cross even though a

phase transition occurs due to a lack of a uniquely ordered
ground statesreplica symmetry breaking or RSBd which
causesBsT=0d to take nontrivialL dependent values, as
found in Heisenberg spin glasses.9,10 The parameterA is in-
troduced to study the so-called lack of self averaging11

whose cause, among other reasons, can be the occurrence of
RSB. When self averaging is foundA is zero in the thermo-
dynamic limit. In the absence of self averagingA is finite in
the thermodynamic limit andB may not exhibit a crossing.
G, on the other hand, is sensitive to the pattern of RSB which
occurs and may be finite even thoughA is zero.7 A lack of
self-averaging has been found in mean field models of spin
glasses,7 at TC in dilute Ising models11 and has been dis-
cussed in the case of the present model.12 A detailed discus-
sion here is, however, beyond the scope of the present work.

The parametersA, B, and G are shown in Fig. 2 at a
concentrationx=0.18. It is clear that althoughA, B, andG
show hints of a crossing at finiteTC, the data is far too noisy
to be conclusive. The large statistical noise in the data is due
to the fact thatsid B is essentially a four-point correlation
function and so is inherently noisy;sii d A measures small
sample to sample fluctuation which may very well be zero in
the thermodynamic limit; andsiii d G is the ratio of two small
quantities, which may be zero in the thermodynamic limit,
but whose ratio is in all probability finite. ThatA, B, andG
can be noisy has been reported in the context of spin
glasses.7

A far less noisy quantity is the ratioj /L, which we cal-
culate using the following definition:9

FIG. 2. Dimensionless ratiosB, A, G,
andj /L vs temperature atx=0.18.
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j =
1

2 sinsukminu/2d
S xs0d

xskmind
− 1D1/2

s8d

with xskd the wave vector dependent susceptibility, andkmin

the minimum wave vector allowed by the choice of boundary
conditions which in our case iskmin=s2p /Lds1,0,0d. For a
ferromagnetxskd is given by

xskd = bL−3o
i

o
r

eik·rSi ·Si+r s9d

and b=1/kBT, with kB=1. For a second order phase transi-
tion a plot of the ratioj /L will cross atTC, independent of
the complexity within the ordered state unlike the quantities
A, B, and G which, as we have seen, depend upon details
such as self averaging and the pattern of RSB. As observed
in Fig. 2, the ratioj /L shows a very clear crossing at a well
defined transition temperatureTCsx=0.18d=0.495s2d in stark
contrast toA, B, andG.

The transition temperature determined from the crossing
of j /L might include significant finite size effects, and so we
compare the crossing temperature for these small lattices
with a different method which contain large, resolvable, fi-
nite size corrections. According to finite size scaling theory,
the extrema of a thermodynamic quantity occurs at a
pseudotransition temperatureTCsLd which scales according
to13

TCsLd = TC + aL−1/n s10d

neglecting scaling corrections, which can be avoided by us-
ing large enoughL. In Fig. 3 we show the crossing ofj /L for
L=4, 6, 8, 10, and 12 along with the extrema ofB andxs0d
used to obtainTC with Eq. s10d for L=4, 6, 8, 10, 12, 16, and
20. For the scaling plot we use the Heisenberg exponent13

n=0.705, which a collapse of thej /L data, also shown in
Fig. 3, demonstrates to be valid. Excluding the data forL
,10 a weighted average yieldsTCsx=0.15d=0.601s3dTCsx

=0d, where we have takenTCsx=0d=1.443J/kB sRef. 13d.
The j /L data for even the very small lattice sizes shows an
almost perfect crossing atTCsx=0.15d=0.608s5dTCsx=0d,
showing that finite size effects in thej /L plot are negligible.

Finally, we construct the ferromagnetic phase boundary
from the transition temperatures found in this study, shown
in Fig. 4. If we allow for a continuous decrease ofTCsxd for
increasingx such as a power law, thenxc=0.276s9d, a value
inconsistent with our finding that the curves ofj /L fail to
cross at any temperature at or beyondx=0.22. Rather, a ver-
tical phase boundary atxc is drawn, as found in both the
mean field phase diagram1 as well as experiments.2 Evidence
for a phase boundary atxc=0.208s2d in this model is found
by constructing plots ofj /L at constantT for variousx. A
crossing is found near the samex for three differentT’s
below TCsxcd ssee Fig. 4d, consistent with a vertical phase
boundary although we are unable to prove it. Assuming a
vertical phase boundary we quotexc=0.208s2d.
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FIG. 3. The crossing ofj /L for x=0.15 using very small system sizes. Inset
sad shows the transition temperature determined from the extrema of several
thermodynamic quantities using larger systems, which isTC=0.601s3d in
agreement with the crossing ofj /L. Insetsbd shows the scaling collapse of
j /L using the Heisenberg exponentn=0.705.

FIG. 4. The ferromagnetic phase boundary for the short range ±J bond
frustrated Heisenberg model. All transitions have been normalized to the
transition temperature of the puresx=0d model which we take heresRef. 13d
asTCsx=0d=1.443J/kB.
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