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Singular point detection (SPD) for the determination of the anisotropy field (BA) using
a conventional magnetometer is demonstrated. We then follow the composition depen-
dence of BA in MnxGa using a combination of SPD measurements complemented
by first-principles density functional theory (DFT) calculations. We find excellent
quantitative agreement for 1.2 ≤ x ≤ 1.8, but observe a marked departure for x ≤1.2.
We suggest that the deviation from ideal behaviour might be associated with site
disorder at low excess Mn. © 2017 Author(s). All article content, except where oth-
erwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4974890]

I. INTRODUCTION

Manganese-based magnetic compounds are being investigated for two main reasons: (1) they
avoid the need for rare earths, (2) they offer a modest-cost/modest performance alternative to the
two dominant hard magnet technologies based on Nd2Fe14B (515 kJ m�3) and Ba(Sr)Fe12O19.
One possible such system is Mn-Ga. Unfortunately, the Mn-Ga binary phase diagram is extremely
complex, lacking a single congruently-melting compound. As a result, sample preparation is
complex and quality is often poor. In order to assess the possible applications of MnxGa as
a new, rare-earth free hard magnetic material it is essential to start by establishing the intrin-
sic properties of well characterised single-phased materials as these parameters ultimately set
the limits on what might be achieved through appropriate optimisation through doping and heat
treatments.

In our previous work on the MnxGa hard magnet system we concentrated on the crystal struc-
ture and basic magnetic properties (Tc and saturation magnetisation).1–3 We showed that the system
adopts a primitive tetragonal structure (P4/mmm #123, sometimes denoted “L10”) with Mn on the
1d site and a mixture of Ga and Mn on the 1a site, and ruled out the larger body-centred tetragonal
structure (I4/mmm #139 sometimes denoted “D022”).2 Antiparallel coupling between the substitu-
tional Mn(1a) moments and those on the Mn(1d) atoms leads to a reduction in magnetisation with
increasing x.

Here we turn our attention to another intrinsic property of the MnxGa system: The anisotropy
field (BA). While the coercivity (Bc) is a key limiter for applications, it is an extrinsic materi-
als property affected by the sample’s preparation history and microstructure. By contrast, BA is
intrinsic and ultimately sets a hard upper limit on any possible coercivity. For example, in an
isotropic system of non-interacting particles, the Stoner-Wohlfarth model gives Bc ∼

1
2 BA.4 Real

materials often fall far short of this limit. Our work here provides a baseline for doping-based
enhancements. We use two complementary techniques: (1) direct measurement by singular point
detection (SPD);5 (2) First-principles density functional theory (DFT) calculations, the results of
which have been shown to yield excellent agreement with Mn moments measured by neutron
diffraction.2
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II. EXPERIMENTAL METHODS

The series of tetragonal MnxGa (x=1.15, 1.20, 1.40, 1.50, 1.60 and 1.80) alloys studied here
are the same ones used previously in our neutron diffraction work2 and have therefore been fully
characterised. We will not repeat the various structural and magnetic properties here.1–3 The samples
were prepared by induction melting high purity gallium (99.9%) and manganese (99.5%) in an argon
atmosphere. Excess Mn was added to compensate for evaporation losses during melting, and the
as-cast ingots were annealed at temperatures between 700 K to 900 K for one to seven days and then
quenched into ice water.

A. Singular point detection

Measurement of the anisotropy field (BA) via singular-point detection5,6 is conventionally carried
out using pulsed high magnetic fields,7 in large part because BA tends to be quite large in systems of
interest, but also because the SPD technique requires access to the second or third derivatives of the
magnetisation with respect to the applied field5–7 and these are relatively easy to obtain in the rapidly
changing fields produced in a pulsed magnet. While Turilli showed in 1994 that the combination of a
small modulating field and lock-in detection of the harmonic response could be used to measure BA

in a more conventional magnet,8 this idea does not appear to have been picked up.
The advent of commercial, automated magnetometer/susceptometer units based around large-

field superconducting magnets (such as the Quantum Design Physical Properties Measurement
System “PPMS” used here) opened up the possibility of using SPD techniques in almost any labora-
tory. Direct, double differentiation of the magnetisation to obtain d2σ/dB2 places inordinate precision
requirements on the magnetometer, especially since the derivatives become quite small as the system
approaches saturation (where BA is inevitably located). Increasing the sample size to compensate, just
overloads the detection system. However, if one simply measures the ac susceptibility, χac = dσ/dB,
and then differentiates numerically to obtain d2σ/dB2, the resulting signal is remarkably clean.

Figure 1 shows some typical data for Mn1.2Ga taken at 200 K. The sample size used (about
40 mg) was close to saturating the magnetometer, but the susceptibility is far below the saturation
limits of the instrument and much larger samples could be used if signal strength is problematic.
The magnetisation curve in Figure 1 shows the usual slow approach to saturation typical of these

FIG. 1. Top: Magnetisation (red points, left axis) and susceptibility (blue points, right axis) for Mn1.2Ga at 200 K, obtained
by direct measurement using a Quantum Design PPMS. The approach to saturation is quite slow and there is a weak inflection
in the χ(Bo) trend. This inflection is more clearly seen in the numerically calculated second derivative of the magnetisation
shown in the lower panel. The minimum in d2σ/dB2 at Bo = 4.70(7)T marks the anisotropy field (BA).
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materials. The ac susceptibility measured at 1 kHz with a drive field of 1 mT shows a steady decline
(the low-field section has been removed to permit re-scaling) but an inflection is apparent near Bo=5 T.
Numerical differentiation yields d2σ/dB2 which exhibits a very well defined cusp at BA=4.70(7) T.
We used a 3-point low-noise Lanczos differentiator with M = 2 (a quadratic fit),9 but the susceptibility
data were clean enough that this was almost certainly over-kill. The SPD method used here requires
no special set-ups or modification of the existing system and the complete measurement can be carried
out in a matter of minutes.

B. Density functional calculations

The magnetocrystalline anisotropy (MCA) is the result of an interaction between the spin-orbit
coupling (SOC) and the crystal field (CF).10 The details of MCA depend on many factors such as
lattice strain or chemical composition variation.

There are several DFT-based methods for calculating the magnetocrystalline anisotropy. One is
a self-consistent scheme based on the direct calculation of the total energy difference between the
two different magnetisation directions with spin-orbit coupling. In principle, this approach is exact
and straightforward, but it is computationally demanding. With the force theorem (FT) approach,
the computational cost is substantially reduced. The MCA is taken as the band energy difference
obtained after a one-step diagonalisation of the full Hamiltonian including SOC, starting from the
well converged self-consistent scalar relativistic (without SOC) density/potential. In 3d systems, the
SOC band shifts are usually well described by second-order perturbation theory. The anisotropy of the
expectation value of the SOC operator∆Esoc = 〈Vsoc〉a−〈Vsoc〉c is approximately equal to 2EMCA.11–14

First-principles DFT calculations have been performed using the linear-muffin-tin orbitals
(LMTO) method with a coherent potential approximation (CPA) to treat alloying behaviour.15,16 The
exchange-correlation has been treated by the generalised gradient approximation (GGA) of Perdew-
Burke-Ernzerhof.17 The k-space integrations have been performed with the tetrahedron method.18,19

A uniform mesh of 24 × 24 × 24 in the full Brillouin zone provided sufficient accuracy for the k
integration. The relativistic effects are treated by solving a scalar relativistic wave equation. For
3d system, SOC energy is relatively weak and can be treated perturbatively,11,14 and spin-resolved
electron filling near the Fermi level plays a major role in determining Esoc.11,12 The MCA energy is
approximately one half of the difference between the spin-orbital energy ESOC with spin quantisa-
tion axis parallel to the [100] and [001] crystal orientations, i.e. EMCA = (E100

soc − E001
soc )/2. A positive

EMCA implies uniaxial magnetic anisotropy while a negative EMCA indicates easy-plane magnetic
anisotropy.

In our calculations, the lattice constants were derived from a linear fit to the experimental data
on MnxGa3. The derived relationship between lattice constants and composition x in MnxGa were
a= 2.7203 + 0.02027 · x and c= 3.7235 − 0.13668 · x for the P4/mmm structure.

III. RESULTS AND DISCUSSION

The MCA energy (EMCA) has been calculated as a function of x in MnxGa. Figure 2(a) shows that
as the excess Mn enters 1a site, there is an initial sharp increase in EMCA followed by a more gradual
increase after x = 1.2. To understand the origin of MCA in MnxGa, the atomic- and site-resolved EMCA

are displayed in Figure 2(b). The contribution from Mn at the 1d site dominates EMCA and increases
initially and then remains almost unchanged with increasing x. The contribution from Mn at the 1a
site is small but negative, i.e. it tends to favour easy plane anisotropy. However, its contribution falls
with increasing x, and this tends to offset the effects of an increasing population of Mn(1a) atoms.
The contribution from Ga at the 1a site is small and positive but remains almost unchanged with
increasing x.

To gain more insight into the origins of the MCA in MnxGa, Esoc was resolved into spin compo-
nents, i.e. spin-up (E↑↑soc), spin-flipping (E↑↓soc)and spin-down (E↓↓soc) contributions. For Mn at the 1d site,
all three components favour axial anisotropy, however the spin-flipping contribution (2E↑↓soc) domi-
nates. Thus, spin flipping near Fermi level plays important role in the underlying mechanism of MCA
in MnxGa. In addition, E↓↓soc increases with increasing x, which is responsible for the enhancement of
EMCA with increasing x.
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FIG. 2. (a) Calculated magnetocrystalline anisotropy energy (EMCA) for MnxGa. (b) Site and atom resolved contributions to
the total EMCA. Note: For x=1.0 there is no Mn on the 1a site and hence no contribution.

For uniaxial anisotropy, Keff = EMCA, so the effective MCA field (BA) has been calculated using
BA = 2Keff /µ0Ms = 2EMCA/µ0Ms, where Ms is the calculated saturation magnetisation. As shown in
Figure 3, following an initial sharp rise, BA increases linearly with x for x ≥1.1. The agreement with
the experimental results for 1.2 ≤ x ≤ 1.8 is remarkably good. However there is a marked departure
for x ≤1.2 as the measured BA falls well below that predicted by our DFT calculations. It is also
clear from the two points measured for different (nominal) x = 1.2 samples that there is a significant
sensitivity to composition and/or sample history in samples with a smaller excess of Mn. Given the
quality of the quantitative agreement for x >1.2, we are inclined to suggest that the departure for
x ≤1.2 represents a real effect.

One possibility lies in the idealised model used for the calculations: The excess Mn is assumed
to substitute randomly for Ga on the 1a with no other effects. However, it is possible that there may

FIG. 3. Comparison of the anisotropy field for MnxGa derived from DFT calculations (blue squares) and SPD measurements
at 5 K (red circles). For x ≤1.2 the measured values decline more rapidly than those calculated by DFT. Data for two different
x = 1.2 samples are shown. The dashed line follows the DFT values and is a guide to the eye.
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be a tendency for the Mn to cluster, or for some Ga to be displaced onto the Mn(1d) sites. Given the
low concentrations involved, both departures from ideality would be extremely difficult to pick up by
neutron diffraction, but initial calculations suggest that this disorder effect could be the origin of the
reduced magnetisation predicted by extrapolation for stoichiometric MnGa3, and it might go some
way to explaining the instability of the 1:1 parent compound, which so far has eluded preparation.

IV. CONCLUSIONS

We demonstrate that a conventional extraction magnetometer (Quantum Design Physical Prop-
erties Measurement System – PPMS) can be used to determine the anisotropy field (BA) using the
singular point detection method. The required second derivative of the magnetisation (d2σ/dB2) was
obtained by numerical differentiation of the ac susceptibility (χac = dσ/dB) measured step-wise as a
function of the applied field.

This approach is applied to the investigation of the composition dependence of BA in MnxGa, a
rare-earth free hard magnet system. First-principles DFT calculations indicate that the contribution
from the Mn(1d) site dominates the MCA energy and increases with x in MnxGa. Despite a small
negative contribution from Mn at the Ga(1a) site, the effective magnetic anisotropy field (BA) increases
from 4 T to 10 T as x increases from 1 to 2. The calculations are in excellent agreement with
experimental values of BA, however there is a marked departure for x ≤1.2 which may be associated
with site disorder at low Mn excesses.
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