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Solution to the scale function

equation

Vector norm
Isotropic case (G=1): |r"d|=2"|1] Solution: ||£||:|?|@(;); @(})>0
A
Unit vector

What is the solution of the
scale function equation

I, ol =2l withs e[ B ]2
0 A

Stratified Case
(G diagonal):

Unit ball:

Make a nonlinear coordinate transformation:

(AY,A2") = (Ax,sign(A2)|Az"™ ) & Check: f(av.a0)=(x axsien(h " ac)a " ad ™ |21 (ax.2)

-
|~

I I
. . . . . . . ATAr =
that transforms the anisotropic scaling equation into the isotropic equation " - ”

>

with A= (Ax,’AZ,). The general solution of this istropic equation has already been given; the
general solution of the anisotropic equation is therefore:

/H,

Mo OO (act o gy A _ sign(A0)Ad
|Ar]|=©(6) r—(Ax +|Ag] ) : tane_Ax’_ .

where 0’, ’ are the polar angles and radii in the primed system; we have nondimensionalized by
the distances by /; so that the unit scale is also the “sphero-scale”. The canonical solution is

therefore obtained by taking ® = 1. The function © defines the unit ball via the polar coordinate
| =1,
r'= @(9')_1

equation |Ar|

so that ®>0 is necessary so that the unit ball is closed; structures are spatially localized.



General Scale functions in linear GSIl in 2D
(real eigenvalues)

Note, for complex case, a variant of the method works, see the book, p.237.

G is a nondiagonal matrix; it suffices to diagonalize it before applying a (nonlinear)
transformation of variables. Consider for simplicity, the two dimensional case, with the two
eigenvalues A,, A,. When these are real we have the following coordinate transformations

4 .
r =Q'r €——— diagonal

”

r =(x",y")= (sign(x')|x'|l/Ax ,sign(y')|Y'|l/Ay)

From the above discussion we see that

e dl= 2"l [ =27 e

so that the solution of the functional scale equation is the same as for the self-
affine (diagonal G case) except for the doubly primed variables:

”

1/2
Al=© e// i’”; =" = (x/2/Ax 4|y 2/Ay) © tan e// — Y
l=0(07)r"; 7 =le=(x 41y =

_ sign(y)ly™

/A,

Once again, the condition that the balls are decreasing with A (no crossing of balls) is that
©(6°°)>0 and the choice of the otherwise arbitrary ® determines the shape of the unit ball: in
polar coordinates its equation is " =1/©(6") &= Unit ball




multifractals

Simulations of anisotropic

All that needs to be done is to simply replace the vector norms i everywhere by scale

functions ”K” and the spatial dimensions d by elliptical dimensions D,;:

Y(r)

g, =e* T(r)=C""N," Daa 4 L e
1<) <A Ir =]

where the normalization Np,,; constant is still given by an angle integral:
NDel :QDel = J dDelr_,

=1

Note: in evaluating the
integral the following is useful

r=A"r

dr’' =det(A")dr = A"y = \"Pdr

the details of the explicit calculation are somewhat technical and are given in appendix 7A.
The statistics of the resulting v field will satisfy the anisotropic extensions of the earlier

formulae:

(lav(an))=arf: &(q)=gH - K (q)
which for any scale function is equivalent to:

<‘AV(TKQ)‘C]> _ )5 <|Av(g)|q>




Anisotropic singularities,
Generalized Scale Invariance

Schertzer and Lovejoy 1987

Self-similar processses Anisotropic scaling processes

noise —(D—H) _(Del_H)
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Scale function equation:
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Some practical issues for anisotropic simulations
| 512 units .

||£3 ||=74=Largest scale present
in simulation region —

Simulation
region Ir|| =1

=spheroscale

I, =0.2=0ne

pixel wide - , ﬁ_
VAN

>

64 units

|
[
||[2 || =6.3=largest scale

completely within the
simulation region

256 units

A schematic diagram showing the balls associated with the canonical system with
l= 8 and: d=I, ¢=-0.1, /=02, e =-0.1. =0.2 is the smallest scale which i1s

completely resolved b%/ the 1x1 pixel grid, =6.3 is the largest scale com{)letely
resolved by the 64x256 pixel simulation region; =74 is the largest scale that

influences the simulation region.



Large physical
scales only:

”Ezn to ”53“

Physical scales

fully represented
by the grid:

”Zl” to HQ”

Era, = €0, 60,12,

Overall product:
I to [

This shows the contributions from the fully resolved band (scales ”Kl” to ”5”) and the partially

resolved band ”52” to ”53” to the total simulation; a= 1.6, C; = 0.1 (same G as in previous).



Examples of 2D simulations on 512x512 pixel grids with oo =1.8, C; = 0.1, H=0.333, d
=1, f=0. Upper left: c=0.8,e=2,/.=512,x=1.3 (2k=r, /r,.. = 54), upper right: c =
-2/7,e=0.1,1,=32,2k= 5, lower left: c= 0.3, e=1.2, /.= 32, 2k = 800, lower right: ¢ =
0.3,e=1.2,/. =1, 2k = 800.



Order emerging from chaos

Max X8 Max X16 Max X32 Max X64

Each row shows a realization of a random multifractal process with a single value of of
the subgenerator y(r) at the centre of a 512X512 grid replaced by the maximum of y(r)
over the field boosted by factors of N increasing by 2 from left to right (from 8 to 64)
in order to simulate very rare events (oo = 1.8, C; = 0.1, H = 0.333). The scaling is
anisotropic with complex eigenvalues of G, the scale function is shown at right.



Simulations in three dimensions, rendering with simulated
radiative transfer

L

i

This is a contour of the scale function corresponding to a single scale; this is a strongly
rotationally dominant case with n = 2, X, =X;= 1.4, d=1,¢=05,e=1,f=0,H,=0.8, |,
=64,



Cloud tops
(densities)

This shows the top layers of three dimensional cloud liquid water density simulations (false colours) all
haved=1,c=0.05,e=0.02,f=0, H,=0.555, o =1.8, C; =0.1, H=0.333 and are simulated on a
256x256x128 point grid (a?>0; stratification dominant in the horizontal). The simulations in the top row
have [/, = 8 pixels, (left column), 64 pixels (right column), k=0, k=32 (bottom row). Note that in these
simulations, the /. =8, 64 applies to both vertical and horizontal cross-sections (i.e. [, =1,). Show an
example with IR scattering?



Sides, same clouds (densities)




Same clouds radiative transfer, top view

The top view with single scattering radiative transfer; incident solar radiation at
45° from the right, mean vertical optical thickness = 50



Same clouds radiative transfer, bottom view

The same except viewed from the bottom.




Same clouds Infra red emission, top view

The same as the previous except for a false colour rendition of a
thermal infra red field (assuming a constant extinction
coefficient and a linear vertical temperature profile).




The top is the visible radiation field (corresponding to previous) looking up (sun at
45° from the right); the bottom is a side radiation fields (one of the 512x128 pixel
sides), average optical thickness =10, single scattering only.



Top horizontal section (density) Corresponding top radiative
transfer

Corresponding scale function

T

o il Corresponding side radiative
Side (density) transfer

An example with a = 1.8, C; = 0.1, H = 0.333, on a 512x512x64 grid (the latter is the thickness). The
parameters are n,=1,n;=2,x,=0.3,%x=0.8,c=0.2,e= 0.5, f= 0.2 (rotation dominant), H, = 0.555 with
l.=128, 1,=32. The upper left is the liquid water density field, top horizontal section, to the right is the
corresponding central hrizontal cross section of the scale function. The bottom row shows one of the
sides (512x64 pixels) with corresponding central part of the vertical cross section.















Rocks




Flyby 1

This
4096X4096
simulation is
flown over

0=1.8, C,=0.12, H=0.7
0.65 —0.1

0.1 1.35

;=64 pixels







Stratified Multifractal Crust,
Mantle rock density simulation

Vertical cross-sections D=3

. Lithospheric rock density 3000k Mantle density

$12km 6000km

Sphero-scale 1 =256km, with 1 pixel = 1km. . o
phero-scaie f, m, with £ pxe m Sphero scale = 1 pixel. Each pixel is 50 km, sphero-scale = 25km.

Hot (low density) plumes shown as white/red (this is a model for
either density or temperature fluctuations (the two being proportional;
we assume constant expansion coefficient). These are for fluctuations
with respect to the mean vertical profile



Simulated magnetization field for
horizontally isotropic crustal magnetization

> 32km

16 km

Parameters: are H,=1.7,s=4,H=0.2, . =1.98, C; = 0.08, /. = 2500 km,



The unity of geosciences: clouds and rocks

2000 km Parameters: H,=5/9, L, = 0.1 km

<€ >

s CD ) i
| (=)
20 kaL

< >
2000 km

Parameters: H, = 2., L, = 40000 km

aspect ratios = 1/5



Scale functions in linear GSI
(position independent)  scleisolinesin

red
Isotropic
(self similar) Self-affine
T, =1 of
4=
: : Rotation
Stratification dominant
dominant (real S =
. =R (complex
eigenvalues) RN .
eigenvalues)

1.35 0.25\ G_(1.35 —0.45)
~ 1025 065) “(085 065)



Contours of the ¢
functions

Fractional
Brownian motion,
H=0.7

Fractional Levy
motion,

H=0.7, =1.8

Multifractal FIF
H=0.7, o. =1.8,
C,=0.12

isotropic Anisotropic no trivial anisotropy Anisotropic with trivial anisotropy



Contours of the
scale functions

Fractional
Brownian motio
H=0.7

Fractional Levy
motion, H=0.7,
0=1.8

Multifractal, FIF
H=0.7, o =1.8,
C,=0.12

isotropic Anisotropic no trivial anisotropy Anisotropic with trivial anisotropy






, H (self-affine, /=64)

Effect of valrymg C

C,=0.05

All:
o=1.8

08 O
0 12

C,=0.15

C,=0.25




Nonlinear GSI

IR satellite picture 2D structure function for small sections

An infra red satellite image from a NOAA AVHRR Contours of S,(Ar) estimated for each 64x64 pixel box from
satellite at 1.1 km resolution, 512x512 pixels the image at left.



The generator of the infinitesimal scale change
g(x) and Nonlinear GSI

To go beyond linear GSI whose generator G is a fixed matrix, one first considers
infinitesimal scale transformations; we will consider reductions of scale by a finite AA and then
take the small scale limit.

Consider the vector 7, obtained by reducing the unit vector by a scale ratio A:

A -G
fx—k r

In order to change the scale of the vector r, by AA, we need to reduce it by a scale ratio 1+AMA:

A e
[x+gk=(l+%) I

hence dropping the indices and taking the limit AA->dA we obtain:

d[z—%G-f

The nonlinear generalization of this is obtained by introducing the infinitesimal (generally
nonlinear) generator g(r):

d£=—%§(1)



Relation between linear and nonlinear GSI

Linear GSI is the special case where g(r) is linear and G is therefore the (fixed) Jacobian matrix
of g:
_ dg,
T ox ;

where as usual, r = (x;, x5, x3). To keep closer links to the linear case, this can be written in

terms of the infinitesimal operator G, defined as:
G, r=g(r)
So that:
dr = —@G r
—_— }\‘ Op_
This can (at least formally) be integrated to obtain:
Py = A F

(1 is a unit vector, 7, is a unit vector reduced by a factor A). In this way we can keep the power
law notation for the scale change operator 7,:

T,=\""



The scale function equation

For any vector, T, increases scale by a factor A, therefore as usual, the scale function has the
basic property:
-1
|7, 2] = 27" e

We can now obtain the basic equation for the scale function. Consider the scale of a vector
reduced from scale A to scale A+AA, as above by the reduction factor (1+AA/A). The basic scale

HT"Z =1 becomes:

-G, -1
(1 22] 7= (1422 g
A A

If we now perform Taylor series expansions and take the limit AA->0, and using G,, = g(r) we
obtain the basic equation for the scale function:

function equation

g,.a%nzn=||z||

summing over the indices i, or in vector form:

(&(r)- V)l =




The solution of the scale function equation

In the special case of linear GSI this yields:
r' -G -Vr| =]

As expected, to solve this partial differential equation for the scale function, we can use the same
series of transformations of variables as used to solve the scale function equation previously:

0
ngw =1

whose general solution is:

= R (6")

2 (2
34

2) . : : : :
where R® is the polar coordinate representation of (x ) and where © (an arbitrary function

of angle) here appears as a function of integration.
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Example of nonlinear GSI
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Nonlinear GSI Simulation




Phenomenological Fallacy

1) Morphology not dynamics is taken as fundamental

2) Scaling is reduced to the isotropic (self-similar) special case
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Anisotropic multifractal surface simulation



Extension from space
to space-time
(including waves)



Space-Time ("Stommel") diagramme

Atmosphere i

Global e=10 3W/Kg = 10 8\W/Kg

Longwaves / :
i £=10"12W/Kg
vz v /! .
/7 ¢/
: ) 4 ,/ Theoretical space-time
g // / relation (t=lifetime)
100 km 3088y
y oL l W2 =31
S, =nE
10 km @ ' / \
Assuming Kolmogorov in horizontal

10 000 km

1000 km

hour millenium
day year century



NOAA's CPC

Log;oM Hou rIy UsS Precipitation, gridded and smoothed
C,=0.37, outerscale = 40 days
= weather
1.0]

‘transition

0.5]

.

“aa
U8 oy

30 Vears 40 days 1 week

Temporal fluxes L0g107¥ 1 hour



Log M

0.6

0.4

0.2

1400 MTSAT IR Images 30°s - 40°N, Pacific
(Spectrum, 1-D subspaces)

q

36km/hr

q=2.8

LogIOMq
30km/hr
0.6}
time
0.4} o
S —
0.2} ;"’,_
Y zaeet -

Logm)\

30 km
Log M,
0.6 3=1.2 Superposition of temporal and spatial
' o - trace moments
/
04
EW e
~* NS Superposition of EW and NS spatial trace
0 ~ = perp P
: R 3 moments
it .
A Log ;oA
.U =225




1400 MTSAT IR images

30°S - 40°N, Pacific (Spectrum, 1-D subspaces) | 1hour,30km

resolution

Log,,k (km)™
(10000)" (1000)" (100)'
NS
Perfect o [

scaling
(with finite
size effects)

log,,E

Spectral
density in
(k. k,, )

space (10 days)’ (1day)’  (10h)"
Space-time scaling is accurately respected:

P(A (ko)) =1 P((ko)) <_;3=__2-> E(k)=kP E(k)=k* E(0)=o®

k= (kk,)




Causal and acausal impulse response
functions and fractional derivatives

Consider the H" order fractional derivative equation for the impulse response function g(¢) (the
“Green’s function”):
d”g 5(1) Fractional differential equation for

the Green’s function

where 0(7) is the usual Dirac delta function. Fourier transforming both sides of the equation, we
obtain:

(im)" §(0)=1 hence g(0)=(io) ™"

where we have used the fact that the Fourier transform of the & function =1, that the Fourier
transform of d/dt is -i®, and have indicated the Fourier transform by the tilde. This g can be used
to solve the general inhomogeneous fractional differential equation:

H
d_:’ — f(t); h=1"f Fractional differential equation for
dt general forcing function

where /(¢) 1s the response to the forcing f(r). We havehwritten the equation both in differential
and in the equivalent integral form where 1" is the H" order integral operator, the inverse of

d" /dt" . The solution of the above is thus:

~ ~

=g =(i0)" Fohn=gsf




Causal, acausal fractional integrations

We see that: “*” indicates convolution and we have used the
_JH ¢ _ fact that multiplication in Fourier space
h=1"f=g*f corresponds to convolution in real space.
where:
~ . -H P ®Heavi (t)t_(l_H) O 1< 0
g((,l)):(l(l)) > g(t): ; ®Heavi(t):
I'(H) 1 120

Opueavi () 1s the Heaviside function. Writing the final solution explicitly, we obtain:
t

H 1 n\(H-1 ’ ’
1) =115 0) =y [ =" 50

(H) .
Value at t depends only on the past
The Riemann-Liouville (“RL”) fractional integration:

H 1 T s|H-1 ’ ’
Iy, (t)=mj|t—t| f(t)dt

L|ouY|IIe (c.ausal) —
fractional integration

Riemann-Liouville
(symmetric, acausal)
fractional integration

G

is based on the Green’s function:

FT. |t|

~ -H 2 . T
= Zsin—(1-H)©
2(o)=lo” 2 sinZ(1- 1)

Note: the integrals
only converge for
O<H<1. To
fractionally
integrate outside
this range, you can
combine usual
differentiation/
integration with
fractional
differentiation/
integration



Daily Rainfall Accumulation (mm)

Example: rivers

The relation between rainfall (R(#)) in small river basins could be considered as the forcing of the
corresponding river flow Q(?) in the fractional differential equation:

T2 R RO = [ (=) 00 ar

where empirically it was found that H = 0.3. In this hydrology context, the Green’s function g
corresponding to the Liouville fractional integral is called a “transfer function”. Physically this
convolution corresponds to a specific power law (scaling) “storage” model for the runoff and
ground water processes which are thus assumed to be scaling over a wide range.

R(t) Q(t)
Simultaneous daily The nearby station of
rainfall accumulation Corbes Roc Courbes
and river flow for the 200 + E
150 - Le Gardon St. Jean (France),.
river. °
® 150 S
a
100 E
% 100 4
i
50 §
0 - 0
0 200 400 600 800 1000 0 200 400 600 800 1000

Day Day




Rivers

Q(t)

800

700
600}
500¢

400§

300

200

100

0

l

AL L

Tl R D L ey
JAAIE . &, MLJ“LL Juk

0 500 1000 1500 2000 2500 3000 3500 4000
Time (days)

River flow data

Rainfall data
fractionally
integrated

Rainfall data

The fields have been offset for clarity




Causality in Space-time: propagators

If we extend the above discussion to space-time, then the corresponding Green’s
function/impulse response function is called a “propagator”. Let us consider as an example the
propagator for the classical wave equation:

1 9
[V2 - Wa7jg(g,t) =9(r.t) Classical wave equation

where V' is the wave speed. Taking the space-time fourier transform of both sides, we find:

|
g(k,0)= (‘Dz /V* — |k|2) Classical wave propagator

Due to the negative sign, the character of this propagator is totally different from those obtained
with a positive sign (relevant to space-time localized strucutres).

Its behaviour is totally dominated by the waves satisfying the relation o°/V"=1k" which
makes the propagator singular, this is indeed the significance of this “dispersion” relation.

Dispersion relation




Turbulence and (fractional)
propagators

Example: The classical wave equation with forcing

(Vz—%g—;)l(z,tﬁf(z,t)

. . ropagator
Solution by Fourier transforms propag

I(k,0) = g(k,0) f (ko) g(km)= (wz/Vz _|l—c‘2)_l

g(A' (ko)) =1"g((ko)); H=2

Isotropic scale change symmetry

Fractional wave equation

-H/2

o 5 HI2 _ - 5
(v ‘W?) =1 5 gko)=(0*/r:-|i)

Note: the dispersion relation is independent of H (>0)



Spatial turbulence

Turbulent law (space)

Kolmogorov values

\l' H
|sotropic - Al(g) = (p‘g‘

o=¢"; H=1/3

FIF model _J  Turbulentlaw (Fourier space)
~ NJ' ~ ~ -H
1(k) =g, (k)o(k) g. (k) =K

Scaling equation

MH|=A

Anisotropic extension || — ||&]
A A

Generator of the anisotropy

Fourier scale function

- ' - 2 2 T A
Canonical scale function ||k||:l 1((kl ) +(kl ) +(kl ) Z)
(vertical stratification) =3 x7s s o'

Sphero-scale



Turbulence in Space-time (horizontal)

Theory (assuming largest eddies “sweep” smaller ones)

Observable Turbulent flux forcing
-1 \ 172
g ' (r.t)*1(r.t)=9(r.1) o =(orkwo K= (K +K /)
£lr)S2(ko) =)
— — 1/3
propagator M= (vx,vy) IV, Vw = ELeLe

EW/NS aspectratio=a
mean horizontal wind= (vx,vy)
Mean planetary scale energy flux € L

}(I_C, w) = é/'(l_(,a))go/(l_c, a)) Planet size: L, = 20000 km

(ko) = (i + &)™



Turbulence and waves

Turbulence forcing Turbulence-waves

Turbulent flux

~ ~ N/ ~ ~ ~
I(k,0)=g,(k,0)p(k,0) gikw)=g,,kwg,, (k)

|

Wheeler Kiladis 1999
factorization

Propagator symmetry constraints

Reality Space-time scaling Causality

Poles of g in ® plane are below real axis:

~

g(k,®)=g*(—/£,—0)) g(l_l(/_C,(D))=7uH§((/g,(D)) 0=—ik®(k) causal i Re(cb(l}))>o

[12

=lg(k): &=

I=

General form g(K)=[K]"  [K]=(~io+|K)F(K)

K=(ko): k=(k.k)



Simple wave ansatz

Simple scaling wave propagator

Fractional (and anisotropic) wave equation propagator

_ o\~ Hoa2 & , B
gwav(l—(’w):(w,z/vvzvav_”]—cH ) H:Htur+Hwav @ =(w+kﬂb 1/2
W|= (k2 + a?)
Dispersion relation W = _l_c ) E T ov ., ]_CH < o'=1v,,[[4]
Turbulent part Wave part
—~12
Spectral density P (k,0)= P(p(l_c,a)) g,
—~2 —~— 2 —2 , 2 _Htur , 2 _leaw/2
& =[] Jew| =@ +e) (02~ el

—s /2
2\ e
2
P(D(]_C,(x)) = PO(O)’ +Hl_€H ) <——— Spectrum of turbulence forcing



H = Htur + Hwav

Spectral density:

P, (k) =< P, (k,»)

gtur

P, = (o +[if)

2

2 ~
‘g way

i
s, =2.88

Spectrum, 2-D subspaces

| (w,k,)

(k.o k,)

H,,,= 0.08
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(k,,®) spectrum, wave part only

-1
P (ko)=|z., (ko) = P(’Z(k;l“i) : kX (km)
[ K,0 Eur -1
. m——— 2)
P, (k,0)= [P, (k k 0)dk —> :

1.1

Dispersion relation for Kelvin
waves (corresponding to h =
12 m, red) 0.

Maximal theory line in green

13)"

Theoretical contours, blue
derived from:

o
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Cascades from localized to increasingly
unlocalized structures: H, . =1/3-H .




Predictability and
stochastic forecasting



Predictability limits algebraic: Lyapunov exponent —> 00

Prediction error: E = AtH

blowup
u(t) |
150
]
m Divergence for t>t, to
100{ {
||

af

a=1.8, C,;=0.1, H=0.33

200 400 t 600 800 1000

Two multifractal proceses with Identical subgenerators to t,




Algebraic divergence of realizations

Lyapunov exponent — O

E=2<12(t0+At)—Il(t0+At)>

L(t,+ At)+1,(t, + At)

1000 Independent realizatjons
LogioE h\
:_ M/WMM\
1.6}
1.5¢ SIope=H=O.33\
1.4}
1.3¢ \
1.2 Average over 1000 pairs of
1.1t multifractal proceses with
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Space-time Cascades, stochastic
nowcasting (rain)

Realization A Realization B Forecast based on first

(all same initially) 16 time steps



Forecasting the climate

AT(At) = AtHT Macroweather up to = 100 years H; =-0.1

t
_ yAH., _ g ~(1-AH) ’ ’
T(t) =17y = __" (t ! ) Y(t )dt Ilgnore intermittency, take quasi-

\ Gaussian model: H, =-1/2

Fractional integration order AH AH = HT — HY =04

To obtain independent noises:

v=1"T




9 latitude bands, AH = 0.4, from 60 years ago
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