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QUANTUM THEORY OF SOLIDS

Version (02/12/07)

SECOND QUANTIZATION

In this section we introduce the concept of second
quantization. Historically, the first quantization is the
quantization of particles due to the commutation rela-
tion between position and momentum, i.e.,

[x, p] = i~. (1)

Second quantization was introduced to describe cases,
where the number of particles can vary. A quantum field
such as the electromagnetic field is such an example, since
the number of photons can vary. Here it is necessary
to quantize a field Ψ(r), which can also be expressed in
terms of commutation relations

[Ψ(r), Ψ+(r′)] = δ(r − r′). (2)

However, there is only one quantum theory, hence
nowadays first quantization refers to using eigenval-
ues and eigenfunctions to solve Schrödinger equation,
whereas in second quantization one uses creation and an-
hilation operators to solve Schrödinger’s equation. Both
methods are consistent which each other and the choice
of technique is dictated by the type of problems consid-
ered. In general, when considering many particles second
quantization is the preferred technique and will be intro-
duced next.

The Harmonic oscillator

The Hamiltonian of the harmonic oscillator is given by

H =
p2

2m
+

K

2
x2, (3)

where ω =
√

K/m. The eigenvalues of this Hamiltonian
are then obtained by solving the Schrödinger eigenvalue
equation Hψ = Eψ, where p = −i~∂/∂x is used and one
obtains for the energy

En = ~ω(n + 1/2), (4)

where n is an integer. In the second quantized form
we introduce the following operators:

a =
(mω

2~

)1/2

(x + ip/mω) ”anhilation operator”

a+ =
(mω

2~

)1/2

(x− ip/mω) ”creation operator”. (5)

Here a+ is simply the Hermitian conjugate of a. Using
these definitions we can rewrite the Hamiltonian as:

H =
~ω
2

(aa+ + a+a). (6)

We now calculate

(aa+ − a+a)f(x) = [a, a+]f(x) , f any function
= 1 · f(x) , since p = −i~∂x. (7)

Hence

[a, a+] = 1, (8)

which is the Boson commutation relation. In addition,
[a, a] = [a+, a+] = 0. Using this commutation relation we
can rewrite the Hamiltonian in second quantized form as

H = ~ω(a+a + 1/2). (9)

In order to solve the Hamiltonian in this form we can
write the wave function as

ψn =
(a+)n

√
n!
|0〉, (10)

and a|0〉 = 0, where |0〉 is the vacuum level of the system.
We now show that ψn defined in this way is indeed the
solution to Schrödinger’s equation Hψn = Enψn. To
show this we first calculate

a+ψn =
(a+)n+1

√
n!

|0〉 =
√

n + 1√
(n + 1)!

(a+)n+1|0〉 =
√

n + 1ψn+1

(11)
and

aψn =
a(a+)n

√
n!

|0〉 =
aa+(a+)n−1

√
n
√

(n− 1)!
|0〉

=
(a+a + 1)(a+)n−1

√
n
√

(n− 1)!
|0〉 =

√
nψn−1, (12)

where we used that a+a(a+)n−1|0〉 = (n − 1)(a+)n−1|0〉
by using the commutation relation (n-1) times. Coming
back to the Hamiltonian we then have

Hψn = ~ω(a+a + 1/2)ψn = ~ω(a+
√

nψn−1 + ψn/2)
= ~ω(nψn + ψn/2)
= ~ω(n + 1/2)︸ ︷︷ ︸

En

ψn (13)

An important difference between the first quantization
method and the second quantization method is that we
don’t need the expression for the wave functions in order
to obtain the spectrum, which simply follows from the
form (9). The form of the Hamiltonian in (9) is diagonal
since the energy is simply given by counting the number
of states, since a+a is just the number operator. Indeed,
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a+a(a+)n|0〉 = n|0〉, since we have n levels above vac-
uum. Hence, the whole task in solving problems with
the second quantization method is to obtain an expres-
sion of the Hamiltonian in a diagonal form, like (9). The
BCS theory of superconductivity in the next section is
a nice example of this diagonalization procedure. How-
ever, before that we will see how we can transform any
Hamiltonian in first quantized form into second quan-
tized form.

General form

The general idea to second quantize a Hamiltonian or
operator is to start by choosing a complete basis, |φλ(r)〉
with

∑
λ |φλ(r)〉〈φλ(r)| = 1. Here we are only interested

in operators of the form O(r) or V (ri−rj). For example,∑
i O(ri) can be a single particle potential like a confine-

ment potential and
∑

i 6=j V (ri−rj) can be a two-particle
interaction potential, such as the Coulomb potential. For
N particles we write O in our complete basis as:

O =
N∑

i=1

O(ri)

=
∑

i

(∑
α

|φα(ri)〉〈φα(ri)|
)

O(ri)
∑

β

|φβ(ri)〉〈φβ(ri)|

=
∑

i,α,β

|φα(ri)〉 〈φα(ri)|O(ri)|φβ(ri)〉︸ ︷︷ ︸
Oαβ

|〈φβ(ri)|

=
∑

α,β

Oαβ

∑

i

|φα(ri)〉〈φβ(ri)|, (14)

where 〈f(r)〉 =
∫

f(r)dr.

Similarly, we can write:

V =
1
2

N∑

i 6=j

V (ri − rj)

=
1
2

∑

α,β,γ,δ

Vαβγδ

∑

i 6=j

|φα(ri)〉|φβ(rj)〉〈φγ(ri)|〈φδ(rj)|

and Vαβγδ = 〈φα(ri)|〈φβ(rj)|V (ri − rj)|φγ(ri)〉|φδ(rj)〉
(15)

This is all very general. Now the idea is to write (14,15)
in second quantized form. If we had only one particle we
could write the wave-function as

ψ =
∑

β

aβ |φβ(r)〉 and

ψ∗ =
∑
α

〈φα(r)|a+
α . (16)

The expectation value of the operator O then becomes:

Oψ = 〈ψ∗Oψ〉 =
∑

α,β

Oαβa+
α aβ . (17)

If a and a+ are defined as the creation and anhilation
operators we then have O written in second quantized
form.

We now generalize this to more particles: In this case
the wave-function is written as

ψ(· · · , ri, · · · , rj , · · ·) = ψ(· · · , rj , · · · , ri, · · ·) bosons
ψ(· · · , ri, · · · , rj , · · ·) = −ψ(· · · , rj , · · · , ri, · · ·) fermions
ψ(· · · , ri, · · · , rj , · · ·) = e−iθψ(· · · , rj , · · · , ri, · · ·) anyons

=
∑

α1,···,αN

Aα1,···,αN
φα1(r1) · · ·φαN

(rN ). (18)

Here Aα1,···,αN
are simply the coefficients. A simple prod-

uct like φα1(r1) · · ·φαN
(rN ) has the correct symmetry for

Bosons but not for Fermions, hence it is useful to intro-
duce an antisymmetrization operator for Fermions, de-
fined as

S−
∏

i

φαi(ri) =
1√
N !

∣∣∣∣∣∣∣

φα1(r1) · · · φαN
(r1)

... · · · ...
φα1(rN ) · · · φαN (rN )

∣∣∣∣∣∣∣
, (19)

which is the Slater determinant. Then we can write for
Fermions

ψ(· · · , ri, · · · , rj , · · ·) =
∑

α1,···,αN

Aα1,···,αN
S−

∏

i

φαi(ri).

(20)
Now we don’t have to worry about symmetry anymore.

The next step is to introduce the occupation number
so that we can rewrite the wave function as

ψ = |nα1 , · · · , nαN
〉 with N =

∑

i

nαi , (21)

where nαi is the number of particles in state αi. The
occupation number operator is then defined as

nαi︸︷︷︸
operator

|nαi〉 = nαi︸︷︷︸
number

|nαi〉 (22)

The number of states for fermions is limited to 0 and 1,
whereas for bosons, nαi can take any integer value ≥ 0.

In similarity with the harmonic oscillator described in
the previous section, the Boson creation and anhilation
operators are then defined as

b+
αi
| · · · , nαi , · · ·〉 =

√
nαi + 1| · · · , nαi + 1, · · ·〉

bαi | · · · , nαi , · · ·〉 =
√

nαi | · · · , nαi − 1, · · ·〉 (23)

and

[bαi , b
+
αj

] = δαi,αj . (24)
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All other commutators ([bi, bj ] and [b+
i , b+

j ]) are zero.
For fermions we have

c+
αi
| · · · , nαi

, · · ·〉 = | · · · , nαi
+ 1, · · ·〉 if nαi

= 0
= 0 otherwise

cαi
| · · · , nαi

, · · ·〉 = | · · · , nαi
− 1, · · ·〉 if nαi

= 1
= 0 otherwise. (25)

Hence, c+
αi

creates an electron in state αi if state αi is
empty and cαi

anhilates an electron from state αi if αi

was occupied. It is quite straightforward to check that
for symmetry reasons the Fermion creation and anhila-
tion operators have to obey the following commutation
relations:

{cαi
, c+

αj
} = cαi

c+
αj

+ c+
αj

cαi
= δαi,αj

(26)

and all others ({ci, cj} and {c+
i , c+

j }) are zero. Also,
cαi |0〉 = 0. The N -particle fermionic wave-function is
now written as

ψ = S−
∏

i

|φαi
(ri)〉 =

∏

i

c+
αi
|0〉, (27)

where the product of creation operators is antisymmetric
by construction of the {,}. Similarly, we have for bosons:

ψ =
∏

i

|φαi(ri)〉 =
∏

i

b+
αi
|0〉. (28)

Hence, with these definitions we obtain

O
∏

i

a+
αi
|0〉 =

∑

α,β

Oαβa+
α aβ

∏

i

a+
αi
|0〉 (29)

or

O =
∑

α,β

Oαβa+
α aβ (30)

and

V =
1
2
Vαβγδa

+
α a+

β aγaδ, (31)

where a+ and a are either bosonic or fermionic creation
and anhilation operators.

We now show that (29) indeed follows from (14). For
bosons, we have

O
∏

j

|φαj (rj)〉 =
∑

α,β

Oαβ

∑

i

|φα(ri)〉〈φβ(ri)|
∏

j

|φαj (rj)〉

=
∑

α,β

Oαβ

∑

i

δβ,αi |φα1(r1)〉 · · · |φα(ri)〉, · · ·︸ ︷︷ ︸
b+α1 ···b+α ···b+αN

|0〉

(32)

if there are p bosons in state β, one of them is replaced
by state α, so that we have terms of the form:

b+
α (b+

β )p−1|0〉 = b+
α (

1
p
bβb+

β )(b+
β )p−1|0〉

=
1
p
b+
α bβ(b+

β )p|0〉, (33)

where we used [b, b+] = 1 and b+b(b+)n|0〉 = n(b+)n|0〉
(the occupation number operator). The last term in (33)
is obtained p times from the

∑
i, hence

∑
i δβ,αi

= p.
Therefore, (33) leads to

O =
∑

α,β

Oαβb+
α bβ (34)

for bosons. For fermions the derivation is quite similar
as well as for V .

Typical Hamiltonian

In first quantization we consider

H =
∑

i

−~
2∂2

i

2m
+ U(ri)

︸ ︷︷ ︸
H0

+
1
2

∑

i 6=j

V (ri − rj)

︸ ︷︷ ︸
V

. (35)

In order to write this Hamiltonian in second quantization
we first need a basis. We chose as basis the free particle
basis:

φα(r) =
1√
V

eikαr, (36)

which is a complete orthogonal basis with∫
φ∗β(r)φα(r)dr = δα,β .
Hence using the orthogonality relations we have,

H0
αβ = δα,β

~2k2
β

2m︸ ︷︷ ︸
εkβ

+U(kβ − kα︸ ︷︷ ︸
q

), (37)

where U(q) is the Fourier transform of U(r). Similarly
for the Coulomb potential V (ri−rj) = e2

|ri−rj | we obtain,

Vαβγδ =
∫

dridrje
irj(kδ+kγ−kα−kβ)ei(ri−rj)(kγ−kα) e2

|ri − rj |

= δkδ+kγ − kα︸ ︷︷ ︸
q

−kβ ,0

∫
eiqr e2

r
dr

︸ ︷︷ ︸
4πe2

q2

= δkβ−kδ,q
4πe2

q2
. (38)

Finally, this Hamiltonian in second quantized form be-
comes

H =
∑

k

εka+
k ak+

∑

k,q

U(q)a+
k−qak+

1
2

∑

k,k′,q

4πe2

q2
a+

k−qa
+
k′+qakak′ .

(39)
What is interesting in this formulation is that we got

rid of the dependence in the number of particles.
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TRANSPORT: THE QUANTUM APPROACH

One dimensional conductance

Suppose that we have a perfect one-dimensional con-
ductor (quantum wire) connected by two large electron
reservoirs. In real life they would be electrical con-
tacts. The left reservoir is fixed at chemical potential
µL = µR + eV and the right one at µR for a potential
difference of V . At zero temperature the current is then
given as

I = −env = −e

∫ ER
F

EL
F =ER

F +eV

D(E)︸ ︷︷ ︸
1
π | ∂E

∂k |−1

·V (E)︸ ︷︷ ︸
∂E
~∂k

dE

=
2e2

h
V, (40)

where D(E) is the one dimensional density of states for
states moving in one direction and V (E) their group ve-
locity. Experimentally this conductance quantization can
be seen in quantum point contacts, in transport through
single molecule or in break junctions.

We now want to generalize this result to other config-
urations including non-ideal ones. Using Schrödinger’s
equation:

i~
∂

∂t
ψ = Hψ

−i~
∂

∂t
ψ+ = Hψ+ (41)

we obtain for the density operator ρ = ψ+ψ

∂

∂t
ρ =

1
i~

(ψ+Hψ − (Hψ+)ψ)

=
i~
2m

(ψ+∇2ψ − ψ∇2ψ+)

=
i~
2m

∇(ψ+∇ψ − ψ∇ψ+)

= −∇j, (42)

where the probability current density is given by

j =
i~
2m

(ψ∇ψ+ − ψ+∇ψ). (43)

This expression is only valid in a zero magnetic field but
for any potential V (r) since V (r) commutes with ψ+.

For a perfect one dimensional system the solution of a
transmitted wave is of the form ψ(x) = teikx, where t is
the transmission amplitude. In this case the probability
current density is given by

jk =
i~
2m

(ψ∇ψ+ − ψ+∇ψ)

=
i~
2m

|t|2(−ik − ik)

=
~

2m
|t|22k (44)

The total electrical current is then

I = e
∑

k

jk = e

∫ kR
F

kL
F

2
2π

jkdk =
2e

h
|t|2∆EF =

2e2

h
|t|2V,

(45)
where we used that EF = ~2k2

F

2m and we obtain the same
expression as (40) for a transmission probability of T =
|t|2.

A similar expression can also be obtained for a single
particle Hamiltonian expressed in second quantized form.
Indeed, for H =

∑
ij Hijc

+
i cj , where ci is f.ex. expressed

in a position basis, and using

i~
∂

∂t
ci = Hci

−i~
∂

∂t
c+
i = c+

i H+, (46)

we obtain for the local density operator ρi = c+
i ci,

∂

∂t
ρi =

1
i~

(c+
i Hci − c+

i H+ci)

=
1
i~

(c+
i

∑

j

Hijcj −
∑

j

c+
j Hjici)

=
1
i~

∑

j

(c+
i Hijcj − c+

j Hjici)

= −
∑

j

jij , (47)

with

jij =
i

~
(c+

i Hijcj − c+
j Hjici), (48)

which is the probability current density flowing from i to
j.

We can now calculate the current for a Hamiltonian in
this representation by considering the expectation value
of the probability current density operator for a given
solution state ψ =

∑
m ψmc+

m|0〉. Hence,

〈ψ|jij |ψ〉 =
i

~
(ψ∗i Hijψj − ψ∗j Hjiψi). (49)

For a plane wave solution ψn = teikn of Hi,i±1 = D and
zero otherwise we obtain

jk = 〈ψ|ji,i+1|ψ〉 =
i

~
D|t|2(2i sin(k))

= − 2
~
D|t|2 sin(k) (50)
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This Hamiltonian corresponds to the free particle on a
discrete one dimensional lattice, where

Hψ = Eψ (51)

leads to

D(ψn+1 + ψn−1) = Eψn, (52)

which gives ψn ∼ eikn and E = 2D cos(k). Therefore the
total electrical current can be expressed as

I = e
∑

k

jk = −2e

~
|t|2D

∫
2
2π

sin(k)dk

=
2e

~
|t|2D 2

2π
(cos(kR

F )− cos(kL
F ))

=
2e

h
|t|2(ER

F − EL
F ) =

2e2

h
|t|2V (53)

We now want to apply these expressions for the case of
molecular transport in the tight binding approximation.

Tight binging approximation

The tight-binding approximation corresponds to the
LCAO (Linear Combination of Atomic Orbitals) method.
Suppose we have molecule consisting of a linear chain of
N atoms, each at a specified position ~rm and having the
corresponding potential V0(~r − ~rm). The total Hamilto-
nian of an electron introduced to the system is

H = H0 +
N∑

m=1

V0(~r − ~rm) (54)

where H0 is the free-electron Hamiltonian. We will as-
sume that, in the N atom case, the electronic wavefunc-
tion Ψ(~r) takes the form of a superposition of the solu-
tions ψ0(~r − ~rm) for the single-atom case and write

Ψ(~r) =
N∑

m=1

ψm ψ0(~r − ~rm) (55)

where {ψm} are the amplitudes. The Schrödinger equa-
tion therefore takes the form

H

N∑
m=1

ψm ψ0(~r − ~rm) = E

N∑
m=1

ψm ψ0(~r − ~rm) (56)

where E is the energy of the electron. We can multi-
ply on the left by ψ∗0(~r − ~rn) and integrate over all of
space to simplify this equation. Approximating the over-
lap between the single-atom solutions to be zero; that is,
supposing

∫
~dr ψ∗0(~r − ~rn)ψ0(~r − ~rm) = δm,n (57)

and defining the coefficients

Tm,n ≡
∫

~dr ψ∗0(~r − ~rn)Hψ0(~r − ~rm) (58)

we obtain the LCAO equation

N∑
m=1

Tm,nψm = Eψn (59)

involving only the amplitudes of the superposition Ψ and
the coefficients {Tm,n}.

Nearest Neighbor Approximation

Next, we will invoke the nearest-neighbor approxima-
tion; that is, we will let

Tm,n =
{ 0 ; |m− n| 6= 1

εn ; m = n
(60)

where εn is the on-site energy of the atom at position
~rn. The coefficients {Tm,n} are the ”hopping terms” of
the molecule and represent the electronic orbital overlap
between neighboring atoms. We can therefore re-write
eq. (59) in the form

∑

m6=n

Tm,nψm = (E − εn)ψn (61)

which defines a system of coupled algebraic equations.
Hence, the free particle in this description is expressed

as Tm,n = D for |m− n| = 1 and zero otherwise.

MOLECULAR TRANSPORT
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The idea here is again to decompose the system in 3

parts, the periodic semi-infinite left lead, described by
a Hamiltonian HL the finite system under consideration,
corresponding to HX and the right semi-infinite lead HR.
The total Hamiltonian then becomes:

H = HL + HX + HR + TLX + TXR, (62)

where TLX and TXR describe the coupling between the
different parts. In matrix form (for a tight binding hamil-
tonian) this corresponds to

H =




HL TLX 0
T+

LX HX TXR

0 T+
XR HR


 , (63)

which leads to the Green’s function:

G = (E −H)−1 =




E −HL −TLX 0
−T+

LX E −HX −TXR

0 −T+
XR E −HR



−1

.

(64)
The center element of the Green’s function GX (element
(2,2)) is then

GX = (E −HX − T+
LX(E −HL)−1TLX︸ ︷︷ ︸

ΣL

− TXR(E −HR)−1T+
XR)−1

︸ ︷︷ ︸
ΣR

= (E −HX − ΣL − ΣR)−1 (65)

Using again the Fisher-Lee formula, we have

T (E) = 4 · Tr[ΓLGXΓRG+
X ], (66)

where Γσ = =(Σσ).
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2D GREEN’S FUNCTION

The two-dimensional Green’s function of an semi-
infinite left lead, (semi-infinite in the ‖ direction and
of finite width N in the ⊥ direction) can be expressed
in terms of the plane eigenfunctions with the boundary
conditions

ψq,m=0 = ψq=0,m = ψq=N+1,m = 0. (67)

These eigenfunctions can then be written as:

〈ψk⊥,k‖ |q, m〉 =

√
2

N + 1
sin(k⊥q)

︸ ︷︷ ︸
φq

·K sin(k‖m), (68)

where φq is normalized, i.e.,
∑

q φ∗qφq = 1 and K such
that

∑
q,m

〈ψk⊥,k‖ |q, m〉〈ψk′⊥,k′‖
|q, m〉 = δk′⊥,k⊥δk′‖,k‖ . (69)

The finite width forces the quantization of k⊥ =
n⊥ π

N+1 . Schrödinger’s equation of the left semi-infinite
lead is:

HL〈ψk⊥,k‖ |q, m〉 = 2tL cos(k⊥) + 2tL cos(k‖), (70)

where tL are the hopping elements of the left lead. The
Green’s function corresponding to HL can then be writ-
ten as

G(p,l),(q,m) = 〈p, l| 1
E −HL

|q,m〉

= 〈p, l|
∑

k⊥,k‖

|ψk⊥,k‖〉〈ψk⊥,k‖ |
E −HL

|q,m〉

=
∑

k⊥,k‖

〈p, l|ψk⊥,k‖〉〈ψk⊥,k‖ |q, m〉
E − 2tL cos(k⊥)− 2tL cos(k‖)

=
2K2

N + 1

∑

k⊥,k‖

sin(k⊥q) sin(k⊥p) · sin(k‖m) sin(k‖l)
E − 2tL cos(k⊥)︸ ︷︷ ︸

E⊥

−2tL cos(k‖)

=
2

N + 1

∑

k⊥

sin(k⊥q) sin(k⊥p) ·K2 sin(k‖m) sin(k‖l)
E⊥ − 2tL cos(k‖)︸ ︷︷ ︸

G1D
m,l(E⊥)

=
2

N + 1

∑
n⊥

sin(n⊥
π

N + 1
q) sin(n⊥

π

N + 1
p)G1D

m,l

(
E − 2tL cos(n⊥

π

N + 1
)
)

, (71)

which is the expression used in page 7 for the edge of the
two-dimensional lead for elements m = 0, l = 0, where
G1D

0,0(E⊥) = eik‖/tL.

TRANSFER MATRIX APPROACH TO
TIGHT-BINDING SYSTEMS

A simple method to solve discrete schrödinger equa-
tions is the transfer matrix technique. We start with the
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general one dimensional tight-binding equation:

tn+1ψn+1 + tnψn−1 = (E − Vn)ψn, (72)

which can be rewritten as

(
ψn+1

ψn

)
=

(
(E − Vn)/tn+1 −tn/tn+1

1 0

)

︸ ︷︷ ︸
Tn

(
ψn

ψn−1

)

=
n∏

j=1

Tj

(
ψ1

ψ0

)
, (73)

where Tj is the transfer matrix. Equation (73) allows us
to express Schrödinger’s equation in terms of the bound-
ary condition ψ1 and ψ0. This also shows the limitations
of this technique, since it only works if the initial bound-
ary conditions are either known or not important. For
general geometries such as those discussed in the previous
section this technique is often not adequate, because of
the relevance of the initial conditions. However, a prob-
lem where the transfer matrix technique is very useful is
in disordered systems. Indeed, in these systems the po-
tential is typically random, hence each configuration of
the potential is different, so that what becomes important
are averaged quantities, such as the average transmission
probability, where the transfer matrix technique can be
used. If we start with eq. (73) and set tn = 1 and leave
only the potential to be n-dependent, it is interesting to
distinguish the cases where Vn is periodic or random. In
the simplest case, where Vn = V0 the product of transfer
matrices can be written as

n∏

j=1

Tj = Tn
0 = S

(
eik 0
0 e−ik

)n

S+

= S

(
eikn 0
0 e−ikn

)
S+, (74)

where E − V0 = 2 cos(k) and S the symmetric matrix,
which diagonalizes T0. Interestingly, the eigenvalues eik

and e−ik are of norm 1 if |E − V0| ≤ 2 (k is real), which
corresponds to the allowed band and supports plane wave
solutions, whereas for |E − V0| > 2, k is imaginary and∏n

j=1 Tj diverges, which corresponds to the exponentially
vanishing modes (or evanescent waves). For any periodic
potential Vn the situation is very similar, where

n∏

j=1

Tj =




a∏

j=1

Tj




n/a

(75)

and a is the periodicity of Vn. Hence, the permitted
bands correspond to the case where the eigenvalues of∏a

j=1 Tj are of norm one, since of tn = 1 the determinant
of Tj is one, which implies that the The product of the

two eigenvalues is always one. This gives us a simple way
to obtain the bandstructure for a periodic potential.

It is then useful to define the Lyapounov exponent as

λ = − lim
n→∞

1
n

ln(min |eig



n∏

j=1

Tj


 |) (76)

in terms if the eigenvalue of the product of transfer ma-
trices. For the periodic potential case λ = 0 inside the
band and λ > 0 inside the gap, where transmission would
be exponentially suppressed as shown in fig. 1, where we
calculated the Lyapounov exponent (the dominant be-
havior of the product of transfer matrices) for a simple
periodic potential.

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

E

λ
Gap Gap 

Bands 
(V=0;1;-1) 

FIG. 1: Lyapounov exponent and corresponding bandstruc-
ture for the periodic potential (tn = 1; V3n = 0; V3n+1 = 1;
V3n+2 = −1).

Moving towards disordered potentials

As a next step it is interesting to consider a periodic
potential, where the periodicity extends over larger unit.
This will lead to a much more complicated bandstruc-
ture with the appearance of many bands and gaps. This
is illustrated in fig. 2, where we chose a potential of peri-
odicity 40 in order to calculate the Lyapounov exponent.

When we now push this much further by considering a
potential which is random the following structure of the
Lyapounov is obtained (fig. 3).

Clearly the Lyapounov exponent is now strictly pos-
itive (λ > 0). This is known as Anderson localization,
which tells us that in one dimension the transmission
through a random potential tends exponentially to zero
with the size of the system.

It turns out that the Lyapounov exponent defined in
eq. (76) is self-averaging for a random potential if n →
∞. This is known as the Oseledec theorem and tells us
that λ is uniquely defined in that limit. Using (73) the
wave function can be written as
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FIG. 2: Lyapounov exponent and corresponding bandstruc-
ture for a periodic potential of period 40.
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FIG. 3: Lyapounov exponent for a random potential of size
1000.

ψn+1 =




n∏

j=1

Tj




(1,1)

ψ1 +




n∏

j=1

Tj




(1,2)

ψ0. (77)

The envelope of the wavefunction is described by e±λn.
Indeed, for a wavefunction of the form e−λn, the Lya-
pounov exponent is simply λ using

λ = − lim
n→∞

1
n

ln |ψn|, (78)

which is equivalent to (76). The relationship between the
Lyapounov exponent and the envelope of the wavefunc-
tion can be understood by realizing that the product of
transfer matrices gives two eigenvalues {e−λn; eλn} in the
n →∞ limit, which means that in average

〈Tj〉 =
(

e−λ 0
0 eλ

)
, (79)

where 〈·〉 is the average over the disorder. This average
correctly gives us the expected dependence of the prod-
uct of transfer matrices and also characterizes the typical
envelope of the wavefunction. The fact that we have two

eigenvalues, one growing exponentially and the other de-
creasing exponentially reflects the role of the boundary
condition. Indeed, the correct boundary condition would
eliminate the diverging solution, hence ψ ∼ e−λn repre-
sents the correct typical envelope of a wavefunction in
a disordered potential. Since this wavefunction decays
exponentially it is called a localized wavefunction with
a localization length Lc = λ−1. Because of this expo-
nential decay the propagation of an electron (or a wave)
in a one-dimensional random potential is exponentially
suppressed, which is commonly referred to as Anderson
localization. In the next section we show this rigourously
with the help of the Green’s function using a perturba-
tion calcluation.

GREEN’S FUNCTION APPROACH TO
DISORDERED SYSTEMS

The idea is to calculate the localization properties of
the following nearest neighbor tight binding Hamiltonian:

H =
∑

i

Vic
+
i ci + c+

i+1ci + c+
i−1ci, (80)

where Vi is a random variable. Writing the solution as
ψ =

∑
n ψnc+

n |0〉, yields

ψn+1 + ψn−1 = (E − Vn)ψn. (81)

In matrix form the Hamiltonian is written as

H =




V1 1 0 . . . 0
1 V2 1 . . . 0
0 1 V3 . . . 0
...

...
...

. . .
...

0 0 0 . . . VN




. (82)

Since

E =




E 0 0 . . . 0
0 E 0 . . . 0
0 0 E . . . 0
...

...
...

. . .
...

0 0 0 . . . E




, (83)

the Green’s function is simply the matrix inverse of E −
H, i.e.,

G(E) = (E −H)−1 ⇒ (E −H)G(E) = 11. (84)

From our calculation from the molecular wire, we have

ψ = Ĝ · J, (85)

where J is the source function (with J(1) 6= 0 and J(i >
1) = 0), Ĝ = (E −H − Σ)−1 the total Green’s function
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including the leads, and Σ the self energy due to the
leads. Hence,

ψN

ψ1
=

Ĝ1,N

Ĝ1,1

. (86)

If we put the coupling to the leads to zero then Ĝ = G
and the Lyapounov exponent (λ) becomes

λ = − 1
N − 1

ln
∣∣∣∣
ψN

ψ1

∣∣∣∣ = − 1
N − 1

ln
∣∣∣∣
G1,N

G1,1

∣∣∣∣ . (87)

From (85), we have that G1,1 is proportional to ψ1,
which we can set to one, without loss of generality.
Hence to calculate (87) we are left with the evaluation
of G1,N . This can be done explicitly by inverting the
matrix G using the expression for the matrix inverse:
(Aij)−1 = (−1)i+jcofij(A)/ det(A) and applying it to
G(1, N). Hence,

G(1, N) =
(−1)N+1(−1)N−1

det(E −H)
, (88)

since the cofactor of (E−H)1,N is simply (−1)N−1. The
det(E − H) is also the product of the eigenvalues, i.e.,
det(E −H) =

∏
α(E − εα), where εα are the eigenvalues

of H. Therefore,

G1,N =
1∏N

α=1(E − εα)

⇒ λ =
1

N − 1

N∑
α=1

ln |E − εα|

=
∫

D(ε) ln |E − ε|dε, (89)

which is known as the Herbert-Jones formula. Here D(ε)
is the density of states D(ε) = 1

N−1

∑
α δ(ε− εα), which

clearly satisfies that n =
∫ EF D(ε)dε, where n is the

density. We can transform λ further by calculating the
derivative, i.e.,

∂Eλ =
1

N − 1

N∑
α=1

1
E − εα

=
1

N − 1

N∑
α=1

|ψ2
α|

E − εα

=
1

N − 1

N∑
α=1

∑N
i=1〈i|ψα〉〈ψα|i〉

E − εα

=
1

N − 1

N∑

i=1

〈i|
N∑

α=1

|ψα〉〈ψα|
E − εα

|i〉

=
1

N − 1

N∑

i=1

〈i| 1
E −H

|i〉

=
1

N − 1

N∑

i=1

Gi,i(E)

⇒ λ =
∫ E

−∞
dE′ 1

N − 1

N∑

i=1

Gi,i(E′). (90)

Equation (89) is typically used to relate the density of
states to the Lyapounov exponent and (90) will be used
for the perturbative calculation of the Lyapounov expo-
nent. Both expressions are exact and were obtained with-
out any approximation. We will now calculate λ using
perturbation theory.

Small disorder perturbation

In general we write the perturbation series for G as

G = G0 + G0V G0 + G0V G0V G0 + . . .

= G0 + G0V (G0 + G0V G0 + G0V G0V G0 + . . .)
= G0 + G0V G (”Dyson eq.”)

⇒ 11 = G0G−1 + G0V

⇒ G−1 = E −H0 − V, (91)

where H0 is the Hamiltonian without disorder and G0

its corresponding Green’s function. V is our small per-
turbation. Using indices the perturbation series reads:

Gij = G0
ij +

∑

k

G0
ikVkG0

kj +
∑

k,l

G0
ikVkG0

klVlG
0
lj + . . .

(92)
We now apply this perturbation series to our expression
of the Lyapounov expression (90), which yields

∂Eλ =
1

N − 1

N∑

i=1

Gi,i(E)

=
1

N − 1
(

N∑

i=1

G0
ii +

∑

ik

G0
ikVkG0

ki +
∑

ikl

G0
ikVkG0

klVlG
0
li + . . .)

(93)

We now take the average 〈·〉D over the disorder, where we
assume the following properties for the disorder: 〈Vk〉D =
0 and 〈VkVl〉D = δk,lσ

2, which corresponds to an uncor-
related disorder of standard deviation σ. Hence,

〈
N∑

i=1

Gi,i(E)〉D =
N∑

i=1

G0
ii + 0 +

∑

ikl

G0
ikG0

klG
0
li〈VkVl〉D + . . .

=
N∑

i=1

G0
ii + σ2

∑

ik

G0
ikG0

kkG0
ki + . . .

=
N∑

i=1

G0
ii + σ2

∑

k

G0
kk

∑

i

G0
kiG

0
ik + . . .
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=
N∑

i=1

G0
ii + σ2

∑

k

G0
kk〈k|

1
E −H0

1
E −H0

|k〉+ . . .

=
N∑

i=1

G0
ii − σ2

∑

k

G0
kk∂E〈k| 1

E −H0
|k〉+ . . .

=
N∑

i=1

G0
ii − σ2

∑

k

G0
kk∂EG0

kk + . . .

=
N∑

i=1

(G0
ii(E)− ∂E

σ2

2
(G0

ii(E))2 + . . .) (94)

Using expression (90) we obtain

〈λ〉D =
1

N − 1

N∑

i=1

(
∫ E

−∞
G0

ii(E
′)dE′− σ2

2
(G0

ii(E))2 + . . .)

(95)
Now we simply have to evaluate G0

ii(E). But since the
eigenvalues of H0 are ε0α = 2 cos(kα) and 〈ψ0

α|n〉 ∼ eikαn,
we have

G0
ii(E) =

∑
α

1
E − ε0α

=
1
2π

∫ π

−π

1
E − 2 cos(k)

dk

=
1√

E2 − 4
. (96)

For an energy inside the band, i.e., |E| < 2, G0
ii(E) =

−i(4 − E2)−1/2 and is imaginary, hence for |E| < 2 and
using (95), we obtain

<〈λ〉D =
σ2

2(4− E2)
, (97)

which is the famous perturbative result obtained origi-
nally by Thouless. The real part is always strictly pos-
itive (for V 6= 0), which implies that all wavefunctions
decay exponentially, which is the proof of Anderson lo-
calization in 1D, telling us that in the presence of any
amount of disorder the transmission will always tend to
zero when the system size tends to infinity. We can also
define a localization length Lc = (<λ)−1, which repre-
sents the spatial extent of the wavefunction and means
that transmission can only occur for systems smaller than
Lc. The imaginary part describes the density of state as
we will discuss below.

To extract the imaginary part we use the definition
of the retarded Green’s function G+(E) = G(E + iε),
where ε is an infinitesimal positive number. Using (90),
the Lyapounov is now

λ =
∫ E

−∞
dE

1
N − 1

N∑

i=1

Gi,i(E + iε)

=
∫ E

−∞
dE

1
N − 1

N∑

i=1

〈i|
∑
α

|ψα〉〈ψα|
(E − εα − iε)

|i〉

= Pλ− iπ

∫ E

−∞
dE

1
N − 1

∑

i,α

〈i|ψα〉〈ψα|i〉δ(E − εα)

= Pλ− iπ

∫ E

−∞
dE

1
N − 1

∑
α

δ(E − εα)

= Pλ− iπN(E) (98)

where we used that 1
x+iε = P 1

x − iπδ(x), where P is the
principle part and N(EF ) is the density. In general, P
corresponds to the real part of the integral, hence:

{
<λ = < ∫ E

−∞ dE 1
N−1

∑N
i=1 Gi,i(E + iε)

D(E) = ∂EN(E) = − 1
π= 1

N−1

∑N
i=1 Gi,i(E + iε)

⇒
{
<λ = < ∫ E

−∞G+(E)dE

D(E) = − 1
π=G+(E)

, (99)

where G = Tr(G)/(N − 1). Hence, in the case without
disorder (V = 0) we have for |E| < 2 that <λ = 0 and
D(E) = 1

π (4− E2)−1/2.
We can now verify, that the above expression for the

density of states is the same as the standard expres-
sion: D(E) = 1

π |∂kE|−1, which indeed is equivalent to
D(E) = 1

π (4−E2)−1/2, since E = 2 cos(k) for V = 0. It
is also interesting to note that up to second order in per-
turbation theory the density of states does not depend
on the disorder, only <λ is affected by the disorder.

CONDUCTANCE QUANTIZATION

We can now apply this result to understand the ex-
perimentally observed conductance quantization seen in
figs. 4 and 5.

FIG. 4: Schematic cross-sectional view of a quantum point
contact, defined in a high-mobility 2D electron gas at the in-
terface of a GaAs-AlGaAs heterojunction. The point contact
is formed when a negative voltage is applied to the gate elec-
trodes on top of the AlGaAs layer. Transport measurements
are made by employing contacts to the 2D electron gas at
either side of the constriction.
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FIG. 5: Conductance quantization of a quantum point con-
tact in units of 2e2/h. As the gate voltage defining the con-
striction is made less negative, the width of the point contact
increases continuously, but the number of propagating modes
at the Fermi level increases stepwise. The resulting conduc-
tance steps are smeared out when the thermal energy becomes
comparable to the energy separation of the modes.

In the ideal pure one dimensional case we had the con-
ductance given by 2e2/h (see eq. 40). When this is ex-
tended to a quasi 2-dimensional case the conductance in-
creases by quantum steps (conductance quantization) of
2e2/h as seen in the experiments. This can be understood
simply in terms of number of channels, i.e., increasing the
width of current channel increases the conductance by an
integer multiple of 2e2/h. In this case the electron energy
is given by

ε =
~2k2

x

2m∗ +
~2(πn/W )2

2m∗ (100)

if the boundary of our narrow wire is assumed to be
sharp, since in this case the wave function has to vanish
at the boundary (like for an electron in a box of width
W ). In general, if

~2(π/W )2

2m∗ < EF <
~2(2π/W )2

2m∗ (101)

then we recover the ideal case of a one-dimensional quan-
tum wire, or single channel. If, however,

~2(Nπ/W )2

2m∗ < EF <
~2((N + 1)π/W )2

2m∗ (102)

we can have n channels, where each channel contributes
equally to the total conductance. Hence in this case G =
N · 2e2/h, where N is the number of channels. This
implies that a system, where we reduce the width of the
conductor will exhibit jumps in the conductance of step
2e2/n. Indeed, this is what is seen experimentally.

FIG. 6: Imaging of the channels using an AFM (1 to 3 chan-
nels from left to right). The images were obtained by applying
a small negative potential on the AFM tip and then measur-
ing the conductance as a function of the tip scan and then
reconstruct the 2D image from the observed change in con-
ductance.

We can also obtain this result directly using our tight
binding approach and the Green’s function approach de-
scribed in the previous section. Taking for example a
width of four sites we can calculate the total transmis-
sion using the Fisher-Lee formula () to obtain the energy
dependence shown in fig. 7.

Perfect 4 channels

Perfect 4 

channels with 

wide contacts

E

G
[2

e
^2

/h
]

FIG. 7: The conductance of a 4 site wide conductor as a
function of energy for the case with wide leads (smooth steps)
or semi-infinite leads of width 4 (square steps).

The reason we obtain a curve which is symmetric in
energy stems from the tight binding approximation. In-
deed, the energy of the quasi two-dimensional system is
given by E = 2 cos(k⊥) + 2 cos(k‖) (the hopping term
is assumed to be 1). Hence, the maximum conduc-
tance is obtained when E = 0, since then cos(k‖) =
−2 cos(k⊥), which is possible for any quantized value of
k⊥ = nπ/(N + 1), where N is the width. For energies
closer to the band edges (E = ±4), the number of possi-
ble values for k⊥ are reduced, which leads to the observed
decrease of the conductance close to the band edges.
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INTRODUCING A MAGNETIC FIELD

When adding a magnetic field to the system the Hamil-
tonian transverse to the magnetic field ( ~B = ∇ × ~A) is
written as

H =
1

2m
(−i~∇− e ~A)2. (103)

For the symmetric gauge ( ~A = (−By/2, Bx/2, 0)) in
coordinates (x, y, z) this becomes

H =
~2

2m

(
−∂2

x +
ie

~
By∂x − ie

~
Bx∂y +

e2

4~2
y2B2 +

e2

4~2
x2B2 − ∂2

y

)
(104)

It is now possible to discretize this equation by defining x = la, y = ka, α = eBa2

h = φ
φ0

= Ba2

φ0
, φ0 = h/e the

flux quantum, a the lattice constant and φ the magnetic flux per unit cell. Using the following expressions of the
derivatives:

∂2
xψ = (ψl+1,k + ψl−1,k − 2ψl,k)/a2 and ∂xψ = (ψl+1,k − ψl−1,k)/2a (105)

we obtain in the limit α ¿ 1

~2

2ma2


−ψl+1,k − ψl−1,k + 2ψl,k +

ia2eBk

~
(ψl+1,k − ψl−1,k)/2 +

e2a4B2k2

4~2︸ ︷︷ ︸
'0

ψl,k + · · ·


 = Eψl,k


− e−iπαk︸ ︷︷ ︸

'1−iπαk

ψl+1,k − eiπαkψl−1,k − eiπαlψl,k+1 − e−iπαlψl,k−1 + 4ψl,k


 = E

2ma2

~2
ψl,k (106)

The magnetic flux through a unit cell is then
∮

~A =
Ba2, with ~A = (−Bk/2, Bl/2, 0)a, which is consistent
with ~B = ∇ × ~A. In general, a Hamiltonian in second
quantized form and in the presence of a magnetic field
can therefore be written as

H =
∑

〈ij〉
eiφij c+

i cj + e−iφij c+
j ci, (107)

where 〈ij〉 are the nearest neighbors and the sum of the
phases over a lattice square is

∑
¤ φij = 2πα. Different

Gauges will lead to different forms of the phase factors,
but the sum over a unit cell is the flux per unit cell.

WEAK LOCALIZATION

An interesting consequence of the magnetic field in the
presence of disorder is the weak localization effect, which
is an increase in conductance at non-zero magnetic field.
This effect arises from the destruction of the phase sym-

metry for two semiclassical trajectories in opposite direc-
tions in the presence of a magnetic field. The simplest
way to understand this is when looking at a single return
trajectory. Without a magnetic field the same trajectory
exists in the opposing direction, hence when summing all
possible trajectories one trajectory and its reverse add
up, which leads to an enhance return probability. This
effect is destroyed by the magnetic field since time re-
versal symmetry is then broken and two trajectories in
opposite directions will then have different phases.

Using our Green’s function technique to calculate the
conductance for a square geometry it then possible to ob-
serve this effect when introducing some disorder as shown
in fig. 8.

The analytical approach is obatained by a perturbative
calculation on the disorder strength, which leads to the
following expression due to Hikami valid in 2D (Ref: S.
Hikami, A. I. Larkin, and Y. Nagaoka, Prog. Theor.
Phys. 63, 707 (1980)).



15

∆σ(B) = − e2

πh

[
Ψ

(
1
2

+
B0

B

)
−Ψ

(
1
2

+
Bφ

B

)]
(108)

,
where Ψ is the digamma function, B0 = h/(8πeDτ),

and Bφ = h/(8πeDτφ). The transport scattering time
is τ with diffusion constant D = v2

F τ/2 (vF the Fermi
velocity) and τφ is the phase coherence time. This
expression typically leads to a logarithmic increase of
the resistance when lowering the temperature, following
∆σ = − e2

πh ln(τφ/τ), where τφ is temperature dependent.
Weak localization (WL) also exists in 3D, where it

was also observed experimentally. Moreover, this phe-
nomenon is only observed when the conductance (or re-
sistance) is averaged over many disorder configurations.
For a given configuration, WL would not be observed
since the conductance in this case is dominated by uni-
versal conductance fluctuations described in the next sec-
tion. The averaging over disorder is equivalent to per-
forming the experiment (numerical or physical) in a sys-
tem, whose size is much larger than the quantum coher-
ence length. Indeed, in this case the conductance of a
system of size L is then simply the averaged conductance
Gφ (multiplied by a dimensional factor) of the system of
size Lφ, where Lφ is the coherence length of the system,
i.e., G = 〈Gφ〉(L/Lφ)D−2, where 〈·〉 is the average of the
disorder and D the dimension.

Weal localization minimum

FIG. 8: Weak localization effect for different square sizes.
The transmission probability is plotted as a function of the
flux per unit cell φ for different square sizes. The dip is easily
seen when averaging over different disorder configurations.

UNIVERSAL CONDUCTANCE FLUCTUATIONS

Universal conductance fluctuations (UCF) is a strik-
ing example of the importance of phase coherence. In-
deed, if the phase coherence of the electron is maintained
over the size of the system studied, the wavefunction de-
scribing the electron traveling through the system will

depend on the detailed shape and given impurity con-
figuration. By changing slightly this configuration the
wavefunction will change, which in turn affects the con-
ductance through the system. This conductance is then
characterized by fluctuations when any external param-
eter such as the Fermi energy or the magnetic field is
changed. An example of this is shown in figure 9.

V=0

V=1

L R

10x100

FIG. 9: Universal conductance fluctuations modeled in the
tight binding approximation for a system of size 10*100 with
increasing disorder.

In general, the conductance fluctuations are of the or-
der of δG ' e2/h for a system where the coherence length
Lφ exceeds the size of the system L. For a system, where
L À Lφ, these fluctuations will be averaged out, which
leads to δG ' e2/h ·√Lφ/L. Hence, in the classical limit
L/Lφ →∞ no fluctuations survive.

AHARONOV AND BOHM OSCILLATIONS AND
PERSISTENT CURRENTS

Aharonov and Bohm oscillations are another interest-
ing manifestation of the quantum coherence of the sys-
tem. When the system is composed of a ring with or
without leads attached to it, when applying a magnetic
field through the ring, the phase of the electrons in the
ring will be affected by the magnetic field (even if there is
no field in the conductor). This will lead to Aharonov and
Bohm oscillations oscillations as a function of the num-
ber of quantum magnetic fluxes penetrating the ring. If
leads are attached to the ring the current will oscillate
as a function of the magnetic field, with an oscillation
given by the quantization of the magnetic flux. This can
be understood by describing the ring in the tight bind-
ing approximation as having two branches with opposite
phases, teiπα and te−iπα, where α = φ/φ0 is the magnetic
flux through the ring in units of the quantum flux. The
total overlap is then simply teiπα + te−iπα = 2t cos(πα),
which immediately shows that the transmission (∼ |t2|)
will oscillate with magnetic field with periodicity α.

Another interesting phenomena in a ring is the exis-
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tence of persistent currents. In this case we consider
a closed ring of N lattice sites. In the presence of a
magnetic field the hopping elements are multiplied by a
phase factor tei2πα/N . For an ordered ring (all hopping
elements are equal and all onsite energies are zero) the
wave functions are simply plane-wave with a phase fac-
tor, i.e., ψn = ei(k−2πα/N)n. These wave functions are
indeed solutions to

tei2πα/Nψn+1 + te−i2πα/Nψn−1 = Eψn, (109)

with E = 2t cos(k−2πα/N). A closed ring penetrated
by a magnetic field implies the following boundary con-
dition: ψn = ei2παψn+N , which leads to the quantiza-
tion of k = 2πl/N , where l is an integer. This implies
that each energy level (given by the quantum number
l) will oscillate as a function of α (E = 2t cos[2π(l −
α)/N ]). From the associated normalized wavefunction
ψl

n = ei(2π/N)(l−α)n/
√

N it is possible to obtain the cur-
rent probability expectation for state l. In the presence
of a magnetic field the current operators have to be mod-
ified in order to include the phase factor. In the contin-
uous case equ. (43) ∇ has to be replaced by ∇ − eA,
where A is the vector potential and in the tight bind-
ing description the hopping term tij in equ. (48) has
to be replaced by tije

−iφij , where φij is the associated
gauge field induced phase factor. This leads to a current
expectation jl = −(2/N~)t sin(2π(l − α)/N), where the
electrical current in this state is simple ejl. Alternatively,
the expression of the current can be simply obtained from

Il = −(e/h)∂αEl = −(2e/N~)t sin(2π(l − α)/N), (110)

where El is the eigenvalue of state l. This last expres-
sion can be understood in terms of the analogy between
the group velocity of Bloch waves (vg ∼ ∂kE) in a pe-
riodic potential applied to the ring geometry, where α
plays the role of the quantum number k.

QUANTUM HALL EFFECT

The quantum Hall effect is the quantization (due to the
Landau levels) of the Hall resistance. This effect is ob-
served in two dimensional systems as well as in quasi-1D
systems. In order to observe a quantized Hall resistance
in two dimensions only a magnetic and an edge a neces-
sary. Hence, in order to understand its physics we need
to solve the two dimensional Hamiltonian in a magnetic
field and a confinement potential. Without confinement
the spectrum in a magnetic field is simply given by the
Landau levels:

En = ~ωc(n + 1/2). (111)

A confinement potential changes this spectrum. In
general, one can introduce a quantum number X describ-
ing the average position perpendicular to the long edge.

For a confinement potential where the potential is infinite
at x=0 it is possible to show that the spectrum is given
by the Landau levels far away enough from the edge and
by En = ~ωc(2n+3/2) at the edge. Therefore, as a func-
tion of X, when approaching the edge the energy levels
bend up as illustrated in fig. 10.

Confining 

Potential

Landau LevelsEF

‹X›

FIG. 10: Landau levels in a confined potential

It is possible to capture most of the physics of the quan-
tum Hall effect by using the tight binding approximation,
where the edge is naturally introduced when considering
a finite size system. In this case the magnetic field has
to be strong enough so that Landau levels develop in the
system. On the other hand, when introducing the mag-
netic field in the tight binding approximation we assumed
that amount of flux per flux quantum (α = φ/φ0) and per
unit cell is small. It turns out that the description is still
correct at large α in the case where a periodic potential
is added to the system. In most physical systems this pe-
riodic potential does not exist or is irrelevant because the
periodicity is so much smaller than the magnetic length.
Hence we need to keep in mind to consider α small if we
are probing Landau level physics.

In example of such a calculation for different fields is
shown in figure 11 for a two terminal configuration.

L R

10x100

�
=1/8� �

=1/2��
=1/4�

V=0.1

FIG. 11: Two-terminal transmission probability of a weakly
disordered system in a strong magnetic field, showing quan-
tum Hall plateaus.

In general, the quantum Hall effect is the most striking
when looked at in a four probe geometry, where contact
contributions are minimized. In order to describe a four
probe device it is necessary to introduce additional leads
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(i = 1, 2, 3, 4). Each lead describes an electron reservoir
at a given chemical potential µi. An example of such a
configuration is given in figure 12. From Kirchhof’s law
it is then possible to write the current from lead i as

Ii = 2
e

h

∑

j

∫
dETji(E)fi(E)− Tij(E)fj(E), (112)

where fi(E) is the Fermi-Dirac distribution of lead i
at the chemical potential µi and Tij is the transmission
probability between lead i and j. At zero temperature
and assuming that Tij(E) = Tij , we then have

Ii = 2
e

h

∑

j

Tjiµi−Tijµj = 2
e2

h

∑

j

TjiVi−TijVj , (113)

where Vi are the voltages of the leads. If all voltages are
equal this means that there cannot be any current, hence
Ii = 0. This leads to the condition

∑
j TjiVi−TijVj = 0,

which implies

Ii = 2
e

h

∑

j

Tji(Vi − Vj). (114)

If we now assume without loss of generality that V4 = 0
this implies that




I1

I2

I3


 =




T2,1 + T3,1 + T4,1 −T1,2 −T1,3

−T2,1 T1,2 + T3,2 + T4,2 −T2,3

−T3,1 −T3,2 T1,3 + T2,3 + T4,3







V1

V2

V3


 , (115)

which can be written in short as

~I = T̂ ~V ⇒ ~V = T̂−1~I. (116)

In a typical experimental configuration the Hall resis-
tance would be obtained by applying a current between
1 and 4 and measuring the Hall voltage between 2 and
3, which we can define as R14,23 = RH . In this case the
expression for the Hall resistance reduces to

RH =
V2 − V3

I1
= (T̂−1)2,1 − (T̂−1)3,1, (117)

since I2 = I3 = 0 (shown in figure 12. Similarly, the
diagonal resistance Rxx is obtained by flowing a current
between 3 and 4 and measuring the voltage drop between
1 and 2. Hence,

Rxx =
V1 − V2

I3
= (T̂−1)1,3 − (T̂−1)2,3. (118)

The transmission probabilities are simply obtained us-
ing the Green’s function formalism, where

Tij = 4tr(ΓiGΓjG
+)

G = (E −H −
∑

i

Σi)−1

Γi = =Σi, (119)

where Σi is the self-energy due to lead i and H is the
Hamiltonian of the system without the leads.

20x100

V=0.1

1

4

2

3

FIG. 12: Four-terminal resistance in units of h/2e2 of a weakly
disordered system in a strong magnetic field, showing quan-
tum Hall plateaus. The red curve shows the Hall resistance,
the green curve Rxx and the blue curve the two-terminal con-
ductance in units of 2e2/h, similar to figure 11.

ITERATIVE GREEN’S FUNCTION
CALCULATION

The main difficulty in the numerical implementation of
the Green’s function method is the size of the Hamilto-
nian for 2D or 3D systems (the inversion of a large matrix
is the main difficulty). Realizing that the transmission
probabilities only depend on the terms of the Green’s
function, which couple the leads it is then possible to
use an iterative approach to obtaining only the relevant
terms. For example, in a quasi 1 dimensional structure
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it is possible to decompose the full Hamiltonian in slices
Hl where the full hamiltonian is

H =




. . .
Hl Tl,l+1

T+
l,l+1 Hl+1

. . .




. (120)

The idea then is to obtain the Green’s function, which
relates the elements of the two extremities H1 and HN ,
by starting with the pair of middle slices HN/2 and
HN/2+1. Hence, we start by obtaining the Green’s func-
tion of the middle slices (l = N/2), i.e.,

G1 =
[
E −

(
Hl+1 T+

l,l+1

Tl,l+1 Hl

)]−1

. (121)

The next Green’s function relating Hl−1 and Hl+2 can
then be obtained by using

G2 =
[
E −

(
Hl+2 0

0 Hl−1

)
− Σ1

]−1

, (122)

where Σ1 is the self-energy due to the middle part given
by Hl, Hl+1 and Tl,l+1, which can be expressed as

Σ1 =
(

Tl+1,l+2 0
0 T+

l−1,l

)
G1

(
T+

l+1,l+2 0
0 Tl−1,l

)
.

(123)
This iterative procedure can be continued until we hit

the first and last slice H1 and HN . The last iteration
then reads,

GN/2 =
[
E −

(
HN 0
0 H1

)
− ΣN/2 − ΣL

]−1

, (124)

where

ΣN/2 =
(

TN−1,N 0
0 T+

1,2

)
G1

(
T+

N−1,N 0
0 T1,2

)
(125)

and ΣL is the total self energy due to the leads con-
necting H1 and HN . The number of leads is not limited
to two. Indeed in the example of figure 12 a total of four
leads were used.

QUANTUM DOTS

A simple quantum dot can be pictured like in fig. 13.
In the tight binding approximation, the Green’s function

Dot Right lead
Left lead

tL tR

1

0

=
=

t

ε
D

ε
1

0

=
=

t

ε

FIG. 13: A typical geometry of a quantum dot

of a quantum dot without interactions can be then writ-
ten as

G =




E − eik tL 0
tL E − εD tR
0 tR E − eik



−1

, (126)

where we used the self-energy eik due to the one-
dimensional lead with dispersion E = 2 cos(k) (t = 1
hopping elements). In order to obtain the transmission
probability we can use Fisher-Lee’s relation (). Hence,

T (E) = |2 sin(k)|2|G(1, 3)|2 '︸︷︷︸
tσ¿1

ΓLΓR(
ΓL+ΓR

2

)2
+ (E − Er)2

,

(127)
where Γσ = |t2σ sin(k)| and Γ = (ΓL+ΓR)/2 describes the
average coupling strength and Er = εD +(t2L + t2R) cos(k)
is resonance energy. This Lorentzian resonance can also
be obtained directly from a simple double barrier geom-
etry.

An alternate approach to this quantum dot can be ob-
tained by using the dot’s Green’s function directly. In-
deed,

GD = (E − (t2L + t2R)eik − εD)−1, (128)

since the self-energies due the leads evaluated directly on
the dot are t2σeik. It is quite straightforward to show that
indeed GD = G(2, 2). Separating the imaginary from the
real part leads to

GD =
(E − Er) + iΓ
(E − Er)2 + Γ2

(129)

Twice the imaginary part defines the spectral function
(A(E) = 2=GD(E)). This spectral function describes
the density probability as a function of energy and is
normalized (

∫
dEA(E) = 2π). The imaginary part of

the diagonal Green’s function can also be related to the
escape rate. Indeed, taking the Fourier transform of

=GD(E) →︸︷︷︸
FT

eiErte−Γt, (130)
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leads to |GD(t)|2 = e−2Γt which describes the probabil-
ity of an electron to be on the dot. Hence, Γ is simply
the escape rate due to the leads of an electron placed on
the dot. It is further possible to relate this escape rate
to the transmission through the dot by using an expres-
sion derived by Meir and Wingreen, which relates the
transmission probability to the spectral function:

T (E) ' |tL|2|tR|2
|tL|2 + |tR|2 A(E)

∂E

∂k

=
ΓLΓR(

ΓL+ΓR

2

)2
+ (E − Er)2

, (131)

which is the same expression as obtained earlier.

DEPHASING IN A QUANTUM DOT

The sharp resonance in a quantum dot is due to the
multiple constructive interferences which occur between
the tunneling barriers. Indeed, without phase coherence
one would expect the transmission probability to be sim-
ply given by T ∼ |t2L| · |t2R|. It is possible to model this
incoherent process by introducing dephasing or decoher-
ence into the quantum dot. A simple way to do this is
to add an additional lead to the dot, which is equivalent
to adding the self-energy due to the lead on the onsite
energy of the dot → εD + t2Ceik, where tC is the coupling
strength to the additional lead.

T(E)

Increased dephasing in a quantum dot

FIG. 14: The resonance transmission of a quantum dot for
different values of dephasing obtained by coupling a lead di-
rectly to the dot. The dot energy was taken to be εD = 0
with coupling tL = tR = 0.1 and tC increasing from 0 to 1.

Similarly, when introducing a complex part to the on-
site energy, one effectively introduces dissipation, which
can mimic for example the effects due to electron-phonon
coupling at non-zero temperatures. The results are very
similar to introducing an additional lead and one would
obtain a dependence similar to the one shown in fig. 14.

Dephasing due to the coupling to a two level system
(TLS)

Quantum mechanical dephasing is in general present
when our system under consideration is coupled to an
environment. This environment can be a lead, coupling
to phonons, coupling to spins or to some other defect or
system, which has some internal degrees of freedom. The
simplest example is a two level system, which is equiva-
lent to a spin 1/2.

Here we will look at how to describe the coupling of a
TLS to a quantum dot. Because of this additional degree
of freedom we have to use the tensor product of the two
systems in order to describe the larger Hilbert space. The
Hamiltonian of a TLS is given by

HTLS =
(

Eu t
t Ed

)
(132)

and the quantum dot Hamiltonian with two lead sites is

HQD =




0 tL 0
tL εD tR
0 tR 0


 . (133)

The total Hamiltonian quantum dot plus TLS can then
be written as

H = HQD ⊗ I2 + I3 ⊗HTLS + HU (134)

where In is the n×n identity matrix and HU the interac-
tion between the TLS and the quantum dot, which could
be of the form

HU =




0 0 0
0 1 0
0 0 0


⊗

(
U tI
t∗I 0

)
, (135)

which corresponds to the case where there is an addi-
tional energy U when the TLS is in the Eu state and the
electron in the quantum dot. There is also a modified
coupling t → t + tI in the TLS if the electron is in the
quantum dot. With this system it is then possible to ob-
tain the Green’s function of the total system with total
energy E, which is given by

G = (E −H − ΣL − ΣR)−1, (136)

where

ΣL =




1 0 0
0 0 0
0 0 0


⊗

(
GS

1,1 GS
1,2

GS
2,1 GS

2,2

)
(137)

and

ΣR =




0 0 0
0 0 0
0 0 1


⊗

(
GS

1,1 GS
1,2

GS
2,1 GS

2,2

)
. (138)
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GS are the surface Green’s functions of the semi-infinite
leads, which by analogy to the two-dimensional leads can
be expressed as

GS
n,m =

∑

E⊥

ψ⊥,∗
n (E⊥)ψ⊥m(E⊥)G1D(E − E⊥), (139)

where ψ⊥m(E⊥) are the eigenfunctions of the TLS with
energy E⊥ and G1D the surface green’s function of the
1D leads.

It is now possible to obtain the transmission probabil-
ity of the quantum dot coupled to the TLS, by simply
using Fisher-Lee’s relation. An example is shown in fig.
15. An important point to remember is that the the en-
ergy E is the total energy of the quantum dot plus the
TLS. Hence, even when the two are not coupled the trans-
mission probability curve has two peaks centered at the
eigenvalues of the TLS (for εD = 0 and the black curve
in fig. 15).

H1U=[0 0 0;0 1 0;0 0 0];H2U=[0 t*exp(i*U)-t;t*exp(-i*U)-t 0];U=0 to 3.14

Increased 

dephasing

T(E)

FIG. 15: The resonance transmission of a quantum dot for
different values of dephasing obtained by coupling a TLS di-
rectly to the dot. The black curve corresponds to zero cou-
pling between the quantum dot and the TLS.

Depending in the type of coupling and details of the
TLS the dephasing effect can be non-existent or very
strong.

CO-TUNNELING AND KONDO EFFECT IN
QUANTUM DOTS

In most quantum dots, Coulomb interactions cannot be
neglected and the single particle picture presented above
breaks down. The most dramatic effect of Coulomb in-
teractions is the presence of Coulomb blockade, which
occurs when the Coulomb potential necessary ti add one
electron to the dot exceeds the Fermi energy, hence effec-
tively suppressing the conductance. Experimentally this
is see as peaks in the conductance as a function of the

gate voltage applied to the dot. A typical example of
these Coulomb blockade peaks is show in fig. 16.

L. P. Kouwenhoven et al., Z. Phys. B 85, 367 (1991). 

FIG. 16: The experimental conductance as a function of gate
voltage in the Coulomb blockade regime.

The basic physics of this can be understood in terms
of simple electrostatics, where the Coulomb potential due
to an additional electron in the dot acts as a potential
barrier, hence suppressing the current flow. This phe-
nomena is illustrated in fig. 17.

F
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D
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Coulomb peak

1)( =
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E

D
ε

U

1)( 〈〈
F

ET

Coulomb blockade + 
co-tunneling

FIG. 17: The basic phenomena of Coulomb blockade, where
U is the Coulomb energy and εD the dot energy.

Hence these basic features (existence of peaks in the
conductance as a function of gate voltage) can be under-
stood in terms of this single electron approach where the
Coulomb interaction is simply treated as an electrostatic
potential. However, there is lot of additional physics hap-
pening when the electron interactions are treated in a
quantum mechanical way. Co-tunneling and the Kondo
resonance are prime examples, where these strong inter-
actions in quantum systems lead to novel phenomena.

Co-tunneling occurs when the quantum dot is in the
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F
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co-tunneling 

with spin-flip
U

D
+ε

1
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FIG. 18: A possible co-tunneling process, which involves a
spin flip. This is a typical second order process

regime of Coulomb blockade, i.e., low transmission. Co-
tunneling leads to an enhancement of the tunneling prob-
ability. While there exist many possible co-tunneling pro-
cesses, the main idea is illustrated in fig. 18. Essentially,
for an electron to get through the dot, the Coulomb
blockade effect is circumvented by having one electron
hopping out of the dot before the next one falls in again.
This is only possible when these ”events” occur simulta-
neously, i.e., co-tunneling, since otherwise energy conser-
vation is violated. These co-tunneling paths can occur in
many different ways and another possibility is illustrated
in fig. 19, which is also a precursor for the Kondo effect.
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E

D
ε

co-tunneling (no spin-

flip) and Kondo 

resonance if summed 

over empty states

U
D

+ε
1 Empty state2

3

4

FIG. 19: Another co-tunneling process, which involves no
spin-flip. This is a fourth order process, which can lead to
the Kondo resonance. The numbers show the order of the
virtual processes.

Tunneling matrix formalism

In order to describe quantitatively this co-tunneling
process it is necessary to go beyond the single particle pic-
ture and it is important to include interactions directly.
A powerful way to evaluate these processes is based on a
generalization of Fermi’s Golden rule. The starting point
is to consider a quantum dot such as the one depicted in
fig. 13 and to separate the couplings tL and tR. Hence, in
quite general terms the total Hamiltonian can be written
as

H = HD + HL + HR︸ ︷︷ ︸
H0

+HLD + HDR︸ ︷︷ ︸
V

, (140)

where the coupling terms are treated as a perturbation.
The idea is then to look at processes from some initial
state: |i〉, which is an eigenstate of H0 (f.ex. N electrons
in the dot and one electron in the left lead) to a final
state |f〉 also an eigenstate of H0 (f. ex. N electron in
the dot and one electron in the right lead). Then the
generalization of Fermi’s golden rule allows us to obtain
the rate Γfi for going from state |i〉 to |f〉, which can
then be related to the conductance through the quantum
dot for that process. The generalized Fermi’s golden rule
is given by (see textbook)

Γfi = 2π|〈f |T |i〉|2δ(εf − εi), (141)

where

T = V + V G0V + V G0V G0V + · · · = V + V G0T (142)

and G0 = (E −H0)−1 is the Green’s function of H0. T
is simply referred to the T -matrix and can be written as
T = V

1−G0V . In principle the contribution of any possible
process can now be evaluated in this formalism and it’s
usually done in a pertubative way using eq. (142). As
an example we will evaluate the process depicted in fig.
18, which is a second order process since it involves the
coupling elements twice. We can write the final state as

|f〉 = c+↑
εD

c↑εL
c+↓
εR

c↓εD
|i〉 (143)

which represents the process of transferring one electron
form the left lead to the right lead, effectively represent-
ing a tunneling process. We can now use the golden rule
to second order, i.e.,

Γfi = 2π
∑

εR,εL,i

|tR|2|tL|2δ(εR−εL)
∣∣∣∣〈f |c+↓

εR
c↓εD

1
εL − 2εD − U

c+↑
εD

c↑εL
|i〉

∣∣∣∣
2

.

(144)
Using (143) then leads to

Γfi = 2π
∑

εR,εL

|tR|2|tL|2δ(εR − εL)
(

1
εL − 2εD − U

)2

×
∑

i

|〈i|c↓εR
c+↓
εR
|i〉〈i|c+↑

εL
c↑εL
|i〉|2

∼
∫
|tR|2|tL|2dεLD(εL)

(
1

εL − 2εD − U

)2

×nF (εL −EFL)(1− nF (εR − EFR)), (145)

where nF (ε) are the Fermi distributions of the leads and
D(εL) the density of state of the lead. Hence, for a dif-
ference in Fermi energy between the left and right lead
of eV we obtain

Γfi ∼ V |tR|2|tL|2, (146)
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which is a typical contribution for a co-tunneling process
(linear in V and of order Γ2).

This previous example was treated within a perturba-
tive approach, where we used the second order T -matrix.
Similarly one could look at different processes in that
way, which is a very standard approach to co-tunneling
in the perturbative regime (t small).

In the following, however, we will use a different ap-
proach, which doesn’t use a perturbation on the T -
matrix, but instead fixes the number of electrons in the
system. The approach is similar to the one of the TLS
coupled to a quantum dot described earlier. We will ap-
ply this formalism to the fourth order process depicted
in fig. 19. The idea is to ”rewrite” the process in fig. 19
as

Dot Right leadLeft lead tL tR
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=
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ε
D

ε
1
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=
=

t

ε

D
ε

R
ε

Empty available state

tR

U

Co-tunneling (no spin-flip)

FIG. 20: The 2-particle equivalent of fig. 19, which grasps
most of the physics.

This 2-particle version is equivalent to the TLS cou-
pled to a quantum dot from eq. (134), i.e.,

H = HQD ⊗ I2 + I3 ⊗HTLS + HU , (147)

with HTLS given instead by:

HTLS =
(

εD t
t εR

)
(148)

,

HU = U




0 0 0
0 1 0
0 0 0


⊗

(
1 0
0 0

)
, (149)

HQD =




0 tL 0
tL εD tR
0 tR 0


 (150)

and the Green’s function is given by eq. (136). However,
instead of using the Green’s function we want to connect
this formalism to the T -matrix. Hence we can define V
as all the off-diagonal components of H, which represent
the couplings to the dots: tL and tR. A reasonable initial
state |i〉 is the down spin electron in the dot and the up
spin electron in the left lead. The final state |f〉 is then

the down spin electron in the dot and the up spin electron
in the right lead. In order to use this formalism we need
the Green’s function for H0 which is simply

G0 = (E −H0 − ΣL − ΣR)−1. (151)

The self energies can be found in the same way as for
the coupling to the TLS system. The transition rate
Γfi = T (E) can then be obtained by using a modified
Fisher-Lee expression:

T (E) = 4 · Tr[ΓLTΓRT+], (152)

where

ΓL = = (
L · ΣL · L+

)

ΓR = = (
R · ΣR ·R+

)
, (153)

and

L =




1 0 0
0 0 0
0 0 0


⊗

(
1 0
0 0

)

R =




0 0 0
0 0 0
0 0 1


⊗

(
1 0
0 0

)
(154)

also T is the T -matrix given by:

T =
V

1−G0V
=

1
V −1 −G0

. (155)

T (E) is now the transmission probability corresponding
to the co-tunneling of an up electron initially in the left
lead, co-tunneling into the right lead in the presence of
a down electron in the dot with a repulsion of strength
U in the dot. Setting εR = 0 allows the dot electron
to virtually hop onto an empty lead state before return-
ing. With this description we can now quantitatively
obtain the transmission probability corresponding to the
Coulomb peak as well as the co-tunneling process. The
result is shown in fig. 21 for different values of the inter-
action parameter U.

The Kondo resonance can also be obtained within this
frame-work, by summing over all available empty states.
These empty states are described by εR, hence the Kondo
resonance for this process contributes as:

∼
∑
εR

TεR
(E), (156)

where TεR(E) is obtained from (152) by using εR as sum-
ming parameter in HTLS . Experimentally, the Kondo
resonance is characterized by an increase in the conduc-
tance at low temperatures as seen in fig. 22.

The temperature dependence of the Kondo resonance
arises from the temperature dependence of available
states εR in the leads. Often the Kondo resonance is
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Increasing U

Coulomb blockade peak

Co-tunneling peak 

Ed=-1

1000=U

0=U
∞→= 0U

FIG. 21: The 2-particle co-tunneling process as function of the
interaction parameter. One can observe the Coulomb block-
ade peak regime at low U and the emergence of a co-tunneling
peak at E = εD + 0 for large U .

(2000)

FIG. 22: Experimental Kondo resonance in a quantum dot,
identified by the increase in conductance at low temperatures.

dominated by a process which involves a filled state in
the leads instead of an empty state. A down electron
form a filled state in the lead hops to the dot, the up
electron from the dot hops to the right lead, then the
up electron from the left lead hops onto the dot and the
down electron on the dot hops back into the freed lead
state. This process can then be described by a 3-particle
T -matrix and the Kondo resonance is obtained by sum-
ming over the filled lead states.

SUPERCONDUCTIVITY
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FIG. 23: Magnetic field dependence in a superconductor.

The main aspects of superconductivity are

• Zero resistance (Kammerlingh-Onnes, 1911) at T <
Tc: The temperature Tc is called the critical tem-
perature.

• Superconductivity can be destroyed by an exter-
nal magnetic field Hc which is also called the criti-
cal field (Kammerlingh-Onnes, 1914). Empirically,
Hc(T ) = Hc(0)(1− (T/Tc)2)

• The Meissner-Ochsenfeld effect (1933). The mag-
netic field does not penetrate the sample, the mag-
netic induction is zero, B = 0. This effect distin-
guishes two types of superconductors, type I and
type II. In Type I, no field penetrates the sample,
whereas in type II the field penetrates in the form
of vortices.

• Superconductors have a gap in the excitation spec-
trum.

The main mechanism behind superconductivity is the
existence of an effective attractive force between elec-
trons, which favors the pairing of two electrons of oppo-
site momentum and spin. In conventional superconduc-
tors this effective attractive force is due to the interaction
with phonons. This pair of electrons has now effectively
zero total momentum and zero spin. In this sense this
pair behaves like a boson and will Bose-Einstein conden-
sate in a coherent quantum state with the lowest possible
energy. This ground sate is separated by a superconduct-
ing gap. Electrons have to jump over this gap in order to
be excited. Hence when the thermal energy exceeds the
gap energy the superconductor becomes normal.

The origin of the effective attraction between electrons
can be understood in the following way:
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Vanadium

FIG. 24: The critical magnetic field, resistance and specific
heat as a function of temperature.
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FIG. 25: Origin of the retarded attractive potential. Elec-
trons at the Fermi surface travel with a high velocity vF . As
they pass through the lattice (left), the positive ions respond
slowly. By the time they have reached their maximum excur-
sion, the first electron is far away, leaving behind a region of
positive charge which attracts a second electron.

When an electron flies through the lattice, the lat-
tice deforms slowly with respect to the time scale of
the electron. It reaches its maximum deformation at
a time τ ' 2π

ωD
' 10−13s after the electron has passed.

In this time the first electron has travelled ' vF τ '
108 cm

s · 10−13s ' 1000Å. The positive charge of the lat-
tice deformation can then attract another electron with-
out feeling the Coulomb repulsion of the first electron.
Due to retardation, the electron-electron Coulomb repul-
sion may be neglected!

The net effect of the phonons is then to create an
attractive interaction which tends to pair time-reversed
quasiparticle states. They form an antisymmetric spin
singlet so that the spatial part of the wave function can
be symmetric and nodeless and so take advantage of the
attractive interaction. Furthermore they tend to pair in
a zero center of mass (cm) state so that the two electrons
can chase each other around the lattice.

Using perturbation theory it is in fact possible to show
that to second order (electron-phonon-electron) the effect
of the phonons effectively leads to a potential of the form

Ve−ph ∼ (~ωq)2

(ε(k)− ε(k − q))2 − (~ω(q))2
(157)

e

e

ξ ∼ 1000Α°

k↑

- k↓

FIG. 26: To take full advantage of the attractive potential
illustrated in Fig. 25, the spatial part of the electronic pair
wave function is symmetric and hence nodeless. To obey the
Pauli principle, the spin part must then be antisymmetric or
a singlet.

This term can be negative, hence effectively produce an
attraction between two electrons exceeding the Coulomb
repulsion. This effect is the strongest for k = kF and q =
2kF since ε(kF ) = ε(−kF ) and ω(2kF ) ' ωD (the Debye
frequency). Hence electrons will want to form opposite
momentum pairs (kF ,−kF ). This will be our starting
point for the microscopic theory of superconductivity à
la BCS (Bardeen, Cooper and Schrieffer).

BCS theory

To describe our pair of electrons (the Cooper pair) we
will use the formalism of second quantization, which is
a convenient way to describe a system of more than one
particle.

H1particle =
p2

2m
⇒ H1pψ(x) = Eψ(x) (158)

Let’s define

c+
1 (x) |0〉︸︷︷︸

vacuum

= ψ(x) and 〈0|c1(x) = ψ∗(x) (159)

With these definitions, |0〉 is the vacuum (or ground
state), i.e., state without electrons. c+

1 (x)|0〉 corresponds
to one electron in state ψ(x) which we call 1. c+ is also
called the creation operator, since it creates one elec-
tron from vacuum. c is then the anhilation operator, i.e.,
c1c

+
1 |0〉 = |0〉, which corresponds to creating one electron

from vacuum then anhilating it again. Other properties
include

c1|0〉 = 0 and c+
1 c+

1 |0〉 = 0 (160)

The first relation means that we cannot anhilate an
electron from vacuum and the second relation is a con-
sequence of the Pauli principle. We cannot have two
electrons in the same state 1.

Hence,

c+
1 c+

1 = 0 ⇒ (c+
1 c+

1 )+ = 0 ⇒ c1c1 = 0
⇒ (c+

1 c1)c+
1 |0〉 = c+

1 |0〉 (161)
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This shows that c+
1 c1 acts like a number operator. It

counts the number of electrons in state 1. (Either 1 or
0).

We can now extend this algebra for two electrons in
different states c+

1 |0〉 corresponds to particle 1 in state 1
and c+

2 |0〉 to particle 2 in state 2. The rule here is that
c+
i cj + cjc

+
i = δi,j .

Finally we can write down the two particle hamiltonian
as

H2p = t1c
+
1 c1 + t2c

+
2 c2 − gc+

1 c1c
+
2 c2 (162)

where ti is the kinetic energy of particle i and g is
the attraction between particle 1 and 2. We will also
suppose that t1 = t2 for the Cooper pair. The job now
is to find the ground state of this Hamiltonian. Without
interactions (g = 0) we would simply have E = t1 +
t2. The interaction term is what complicates the system
since it leads to a quadratic term in the Hamiltonian.
The idea is to simplify it by getting rid of the quadratic
term. This is done in the following way. From eq. (162)
we have

H = t(c+
1 c1 + c+

2 c2)− gc+
1 c1c

+
2 c2

= t(c+
1 c1 + c+

2 c2) + gc+
1 c+

2 c1c2

= t(c+
1 c1 + c+

2 c2)− ga(c1c2 − c+
1 c+

2 ) + ga2

+ g(c+
1 c+

2 + a)(c1c2 − a)︸ ︷︷ ︸
'0 (Mean field approx.)

(163)

⇒ HMF = t(c+
1 c1 + c+

2 c2)− ga(c1c2 − c+
1 c+

2 ) + ga2

We used the mean field approximation, which re-
places c1c2 by its expectation value 〈a|c1c2|a〉 = a ⇒
〈a|c+

1 c+
2 |a〉 = −a, where |a〉 is the ground state of the

Hamiltonian. The idea now is to diagonalize HMF , i.e.
a Hamiltonian in the form H =

∑
i c+

i ci. The trick here
is to use the Boguliubov transformation:

{
c1 = A1 cos(θ) + A+

2 sin(θ)
c+
2 = −A1 sin(θ) + A+

2 cos(θ)

⇒
{

A1 = c1 cos(θ)− c+
2 sin(θ)

A+
2 = c1 sin(θ) + c+

2 cos(θ)
(164)

It is quite straightforward to see that A+
i Aj+AjA

+
i = δij ,

AiAj + AjAi = 0, and A+
i A+

j + A+
j A+

i = 0 using the
properties of ci. We can now rewrite HMF in terms of
our new operators Ai:

HMF = t(c+
1 c1 + c+

2 c2)− ga(c1c2 − c+
1 c+

2 ) + ga2

= t(A+
1 cos(θ) + A2 sin(θ))(cos(θ)A1 + sin(θ)A+

2 ) + · · ·
= (A+

1 A1 + A+
2 A2)(t cos(2θ)− ga sin(2θ))

+ t(1− cos(2θ)) + ga sin(2θ) + ga2

+ (A+
1 A+

2 −A1A2) (t sin(2θ) + ga cos(2θ))︸ ︷︷ ︸
=0 to diagonalize HMF

(165)

Hence the diagonalization condition for HMF fixes the
angle θ of our Boguliubov transformation:

tan(2θ) = −ga

t
⇒ sin(2θ) =

−ga√
t2 + (ga)2

(166)

Hence HMF now becomes

HMF = (A+
1 A1+A+

2 A2)
√

t2 + (ga)2+(t−
√

t2 + (ga)2)+ga2

(167)
It is now immediate to obtain the solutions of the

Hamiltonian, since we have the ground state |a〉 and we
have a diagonal Hamiltonian in terms of Ai hence the
Ground state energy E0 is simply given by HMF |a〉 =
E0|a〉 and Ai|a〉 = 0. The first degenerate excited states
are A+

i |a〉 with energy E1, where HMF A+
i |a〉 = E1A

+
i |a〉

and the next energy level and state is A+
1 A+

2 |a〉, with
energy E2 given by HMF A+

1 A+
2 |a〉 = E2A

+
1 A+

2 |a〉, hence

E2 = t +
√

t2 + (ga)2 + ga2

E1 = t + ga2

E0 = t−
√

t2 + (ga)2 + ga2 (168)

If we take t → 0 (this corresponds to considering zero
temperature and the Fermi energy as the reference en-
ergy) and define ∆ = ga we have





E2 = ∆ + ga2

E1 = ga2

E0 = −∆ + ga2
(169)

We can now turn to what a is since,

a = 〈a|c1c2|a〉
= − cos(θ) sin(θ)〈a|A1A

+
1 |a〉

= − cos(θ) sin(θ) 〈a|a〉︸ ︷︷ ︸
=1

⇒ a = − sin(2θ)/2 (170)

Combining (166) and (170) we obtain

2a =
ga√

t2 + (ga)2
(171)

which is the famous BCS gap (∆) equation. Indeed, it
has two solutions,

a = 0 ⇒ 〈a|c1c2|a〉 = 0 ⇒ Normal
a 6= 0 ⇒ t2 + (ga)2 = g2/4︸ ︷︷ ︸

∆=ga=
√

g2/4−t2

⇒ Superconductor(172)

This gives us the condition for superconductivity g ≥
2t. Hence the attraction between our two electrons has to
be strong enough in order to form the superconducting
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FIG. 27: The gap of a BCS superconductor as function of the
kinetic energy.

gap ∆. For t = 0 (zero temperature and states at the
Fermi energy, EF = 0) and using (169) this leads to a
ground state energy of −∆/2 and to the first excited
state of ∆/2. Hence the states at the Fermi energy have
disappeared in order to form a lower energy ground state
in the presence of an attractive interaction. Typically,
t is proportional to the temperature, hence there is a
superconducting transition as a function of temperature.

We now want to find the expression for our supercon-
ducting wavefunction |a〉. The most general possible form
is

|a〉 = α|0〉+ β1c
+
1 |0〉+ β2c

+
2 |0〉+ γc+

1 c+
2 |0〉 (173)

In addition the condition Ai|a〉 = 0 has to be verified,
which leads after some algebra to

|a〉 = α(1 + tan(θ)c+
1 c+

2 )|0〉 (174)

This state clearly describes an electron pair, the
Cooper pair and represents the superconducting ground
state of the Hamiltonian. In our derivation we only con-
sidered two electrons, but this framework can be gener-
alized to N electrons, where the generalized BCS Hamil-
tonian can be written as

HBCS =
∑

k,σ

tkc+
k, σ︸︷︷︸

spin

ck,σ −
∑

q

gqc
+
k+q,↑c

+
−k−q,↓ck,↑c−k,↓

(175)
Here Vq is positive and represents the effective phonon
induced attraction between electrons at the Fermi level.
It’s maximum for q = 0. The second term describes the
process of one electron with momentum k and another
electron with momentum −k which are anhilated in or-
der to create one electron with momentum k + q and
another one with momentum −k − q, hence momentum
is conserved in this scattering process and a phonon with
momentum q is exchanged.

In mean field theory this BCS Hamiltonian become

HMF =
∑

k,σ

tkc+
k,σck,σ −

∑

k

(∆kc+
k,↑c

+
−k,↓ + h.c), (176)

with ∆k =
∑

k′ gkk′〈c−k′,↓ck,↑〉. Using the generalized
Bogoliubov transformation

{
Ak,↑ = αck,↑ + βc+

−k,↓
A−k,↓+ = −β∗ck,↑ + αc+

−k,↓
(177)

leads to the following mean field hamiltonian:

HMF =
∑

k,σ

Ek︸︷︷︸√
t2k+|∆k|2

(A+
k,↑Ak,↑+A+

k,↓Ak,↓)+K0, (178)

where ∆k is the gap. Using Ak|a〉 = 0, the BCS ground
state can be written as

|a〉 =
∏

k

(uk + vkc+
k,↑c−k,↓|0〉, (179)

which leads to the famous BCS result

2∆(T = 0) = 3.53kBTc (180)

and |∆(0)| = 2ωDe−1/gd(EF ), where ωD is the phonon
Debye frequency and d(EF ) the density of states at the
Fermi energy.

How can we relate BCS theory to the observed Meiss-
ner effect? Including the vector potential ~A from the
magnetic field B = ∇×A into the Hamiltonian we have
p → p − e

cA. In second quantization the kinetic part of
the Hamiltonian is then rewritten as

T =
1

2m

∫
Ψ+(r)(−i~∇r − e

c
A)2ψ(r)dr (181)

in the presence of a magnetic field. Free electrons are
gauge invariant, which can be expressed by

{
A → A +∇φ
Ψ(r) → e−ieφΨ(r) , (182)

which corresponds to ci → cie
−ieφ in our two particle

example. Hence 〈a|c1c2|a〉 → e−2ieφ〈a|c1c2|a〉 which is
clearly not gauge invariant in the superconducting state
since 〈a|c1c2|a〉 = a 6= 0. This clearly shows that the
superconducting state breaks the gauge symmetry.

It is further possible to show that all solutions which
break gauge invariance are solution of p − e

cA = 0. But
the current density is given by j = nev, which leads to

~j =
ne2

mc
~A. (183)

The magnetic induction is ~B = ~∇× ~A as usual. This is
in fact London’s equation for superconductivity. We can
now take the rotational on both sides of (183), hence

~∇× ~j︸︷︷︸
~∇× ~B= 4π

c
~j

=
ne2

mc
~∇× ~A

⇒ ~∇× ~∇× ~B = −4πne2

mc2
~B

⇒ Bx ∼ e−x/λL (184)
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with λL =
√

mc2

4πne2 which is the London penetration
length.

B

x

Inside the 

superconductor

Vacuum

e -x/l
L

FIG. 28: The decay of the magnetic field inside the supercon-
ductor. The decay is characterized by the London penetration
length λL.

If we had a perfect conductor, this would imply that
the current would simply keep on increasing with an ex-
ternal field ~E, hence

∂~j

∂t
=

ne2

mc
~E

⇒ ∂

∂t
~∇×~j =

ne2

mc
~∇× ~E

⇒ ∂

∂t
~∇× ~∇× ~B =

∂

∂t

4πne2

mc2
~B (185)

This equation is automatically verified from (184).
Hence, (184) implies both the Meissner effect and zero

resistance, which are the main ingredients of supercon-
ductivity. (Reminder: Maxwell gives ~∇ × ~B = 4π

c
~j and

~∇× ~E = − 1
c

∂ ~B
∂t ).

A remarkable aspect of superconductivity is that one
of the most fundamental symmetries is broken. Indeed,
Gauge invariance is broken because ~j ∼ ~A. What hap-
pens is that below Tc we have a symmetry breaking,
which leads to new particles, the Cooper pairs. Math-
ematically, we have

U(2)︸︷︷ ︸
Normal state

= SU(2)︸ ︷︷ ︸
SC state

⊗ U(1)︸︷︷ ︸
Gauge invariance

, (186)

where U(1) ⇔ c → ceiα (Gauge invariance), U(2) ⇔ c →
Ac (A = eiφ/2a) and a+a = 1, SU(2) ⇔ φ = 0.

Another important theory in superconductivity is the
Ginzburg-Landau (GL) theory. It stems from the general
theory of phase transitions of which superconductivity is
an important example. It is possible to connect BCS
theory to the GL theory by realizing that the gap ∆ ∼ Ψ
and the density of superconducting Cooper pairs (order
parameter) ns ∼ |Ψ|2 in the GL equation:

[α + β|Ψ|2 +
1

2m
(−i~∇+

2e

c
A)2]Ψ = 0 (187)

Depending on the values of α and β we have either a
type I or a type II superconductor.




