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INTRODUCTION

What is Solid State Physics?
Typically properties related to crystals, i.e., period-

icity.
What is Condensed Matter Physics?

Properties related to solids and liquids including crys-
tals. For example: liquids, polymers, carbon nanotubes,
rubber,...

Historically, SSP was considers as he basis for the un-
derstanding of solids since many of the properties were

derived based on a periodic lattice. However it appeared
that most of the properties are very similar independent
of the presence or not of a lattice. But there are many
exceptions, for example, localization due to disorder or
the disappearance of the periodicity.

Even in crystals, liquid-like properties can arise, such
as a Fermi liquid, which is an interacting electron system.
The same is also true the other way around since liquids
can form liquid crystals.

Hence, the study of SSP and CMP are strongly interre-
lated and can not be separated. These inter-correlations
are illustrated below.
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THE THEORY OF EVERYTHING

See ppt notes

H2O - AN EXAMPLE

See ppt notes

BINDING

What holds atoms together and also keeps them from
collapsing?

We will start with the simplest molecule: H2 to ask
what holds it together.

Van der Waals attraction

The Van der Waals force arises simply from the change
in energy due to the cross Coulomb interactions between
atom a and b, which is simply a dipole-dipole interaction.

FIG. 1: Graphical representation of a H2 molecule

The total Hamiltonian can then be written as the sum
between the non interacting H atoms and the cross terms
due to Coulomb interactions. Hence,

H = (H0) + (Hint) (1)

with

H =
(
− ~

2

2m

(∇2
1 +∇2

2

)− e2

r1a
− e2

r2b

)
+ e2

(
1

rab
+

1
r12

− 1
r1b

− 1
r2a

)
(2)

Using standard perturbation theory it is then possible
to evaluate the gain in energy due to Hint. This is left
as an exercise. The result is

∆E ' −αaαb

r6
ab

, (3)

where αx are the atomic polarizabilities.

Derivation of Van der Waals

Problem 1

Repulsion

We just saw that there is an attractive potential of
the form −1/r6. If there were only a Coulomb repul-
sion of strength 1/r this would lead to the collapse of our
molecule. In fact there is a very strong repulsion, which
comes from the Pauli principle. For the general pur-
pose this repulsive potential is often taken to be ∼ 1/r12,

which leads to a total potential of the form

φ(r) = −4ε

(
σ6

r6
− σ12

r12

)
, (4)

which is usually referred to as the Lennard-Jones po-
tential. The choice of the repulsive term is somewhat
arbitrary but it reflects the short range nature of the
interaction and represents a good approximation to the
full problem. The parameters ε and σ depend on the
molecule.

Crystals

What about crystals? Let’s first think about what kind
of energy scales are involved in the problem. If we assume
that the typical distance between atoms is of the order
of 1Å we have

e2/1Å ' 14.4eV for the Coulomb energy and (5)

~2

(
1

1Å

)2

' 3.8eV for the potential in a 1Å quantum box

(6)
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In comparison to room temperature (300K' 25meV)
these energies are huge. Hence ionic Crystals like NaCl
are extremely stable, with binding energies of the order
of 1eV.

Ionic crystals

Some solids or crystals are mainly held together by the
electrostatic potential and they include the alkali-halides
like (NaCl −→ Na+Cl−).

 

+ - 

d 

FIG. 2: A simple ionic crystal such as NaCl

The energy per ion pair is

Energy

Nionpair
= −α

e2

d
+

C

dn
= −α

14.4eV

[d/Å]
+

C

dn
with 6 < n ≤ 12,

(7)
where α is the Madelung constant and can be calcu-

lated from the crystal structure. C can be extracted ex-
perimentally from the minimum in the potential energy
and typically n = 12 is often used to model the effect
of the Pauli principle. Hence, from the derivative of the
potential we obtain:

d0 =
(

12C

e2α

)1/11

(8)

so that

Energy

Nionpair
=

11αe2

12d0
(9)

How good is this model? See table below:

Quantum mechanics as a bonder

Hydrogen-like bonding

Let’s start with one H atom. We fix the proton at
r = o then we know form basic quantum mechanics that

the ground state energy is then given by E0=-13.6 eV.
What happens if we add one proton or H+ to the system
which is R away. The potential energy for the electron is
then

U(r) = −e2

r
− e2

|r −R| (10)

The lowest eigenfunction with eigenvalue -13.6eV is

ξ(r) =
1√
π

(
1
a0

)3/2

e−r/a0 , (11)

where a0 is the Bohr radius. But now we have two
protons. If the protons were infinitely apart then the
general solution to potential 10 is a linear superposi-
tion ,i.e., ψ(r) = αξ(r) + βξ(r − R) with a degener-
ate lowest eigenvalue of E0 = E0=-13.6 eV. When R
is not infinite, the two eigenfunctions corresponding to
the lowest eigenvalues Eb and Ea can be approximated
by ψb = ξ(r) + ξ(r − R) and ψa = ξ(r) − ξ(r − R). See
figure 3.

0

0
Ψ

a
(r)V(r)

Ψ
b
(r)

+ +
R

r

FIG. 3: The potential for two protons with the bonding and
anti-binding wave function of the electron

The average energy (or expectation value of Eb) is

Eb = 〈ψ∗b Hψb〉/〈ψ∗b ψb〉 (12)

= E0 − A + B

1 + ∆
with (13)

A = e2

∫
drξ2(r)/|r −R| (14)

B = e2

∫
drξ(r)ξ(|r −R|)/r (15)

∆ =
∫

drξ(r)ξ(|r −R|), (16)

where 〈·〉 ≡ ∫ ·dr and similarly,

Ea = E0 − A−B

1−∆
(17)
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Hence, the total energy for state ψb is now

Etotal
b = Eb + e2/R (18)

When plugging in the numbers Etotal
b has a minimum at

1.5Å. See figure 4
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FIG. 4: The energies as a function of the distance between
them for the bonding and anti-binding wave functions of the
electron

This figure illustrates why they are called bonding and
anti-bonding, since in the bonding case the energy is low-
ered when the distance between protons is reduced as
long as R > R0.

Covalent bonding

Covalent bonds are very similar to Hydrogen bonds,
only that we have to extend the problem to a linear com-
bination of atomic orbitals for every atom. N atoms
would lead to N levels, in which the ground state has a
bonding wave-function.

Metals

In metals bonding is a combination of the effects dis-
cussed above. The idea is to consider a cloud of electrons
only weakly bound to the atomic lattice. The total elec-
trostatic energy can then be written as

Eel = −
∫

drn(r)
∑

R

e2

r −R
+

∑

R>R′

e2

R−R′
+ 1/2 ·

∫
dr1dr2

e2n(r1)n(r2)
|r1 − r2| (19)

which corresponds to an ionic contribution of the form

Eel = −αe2

2rs
where rs =

(
3

4πn

)1/3

(20)

and α is the Madelung constant. Deriving this requires
quite a bit of effort. On top of this one has to add the
kinetic energy of the electrons, which is of the form:

Ekin =
(

9π

4

)2/3 3~2

10mr2
s

(21)

And finally we have to add the exchange energy, with is
a consequence of the Pauli principle. The expression for
this term is given by

Eex = −
(

9π

4

)1/3 3
4πrs

(22)

Putting all this together we obtain in units of the Bohr
radius:

E =
(
−24.35a0

rS
+

30.1a2
0

r2
S

− 12.5a0

rs

)
eV/atom (23)

This last expressions leads to a minimum at rs/a0 = 1.6.
We can now compare this with experimental values and
the result is off by a factor between 2 and 6. What went
wrong. Well, we treated the problem on a semiclassi-
cal level, without incorporating all the electron-electron
interactions in a quantum theory. This is very very diffi-
cult, but in the large density case this can be estimated
and a better agreement with experiments is obtained.

Binding summary

There are essentially three effects which contribute to
the binding of solids:

• Van der Waals (a dipole-dipole like interaction)

• ionic (Coulomb attraction between ions)

• Quantum mechanics (overlap of the wave-function)

In addition we have two effects which prevent the collapse
of the solids:
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• Coulomb

• Quantum mechanics (Pauli)

STRUCTURE

 
 

 

FIG. 5: Pyrite, FeS2 crystal with cubic symmetry.

Illustrations

See ppt notes.

Summary

Periodic solids can be classified into two main classes:

• Bravais lattices: Every point of the lattice ~R can be
reached from a a linear combination of the primitive
vectors: ~R = n1â1 + n2â2 + n3â3, where ni are
integers.

• Lattices with basis: Here every point in a primitive
cell is described by a basis vector ~Bi so that any
point of the lattice can be reached through: ~R =
n1â1 + n2â2 + n3â3+ ~Bi.

In 3D there are 14 Bravais lattices and 230 symmetry
groups for lattices with basis. In 2D there are 5 Bravais
lattices and in 1D only 1.

This is the zoology of crystals and they all have names.
It is important to remember that many of the physical
properties cannot be deduced from the crystal structure
directly. The same crystal structure could be a metal
(Cu) or an insulator (Ca).

Miller indices can be obtained through the construc-
tion illustrated in the figure below:

 

 

FIG. 6: Plane intercepts the axes at (3â1, 2â2, 2â3). The in-
verse of these numbers are (1/3, 1/2, 1/2), hence the smallest
integers having the same ratio are 2,3,3, i.e., the Miller in-
dices are (233). For a negative intercept the convention is 1̄.
(Picture from Ashcroft and Mermin)

SCATTERING

See supplement on diffraction.

In order to determine the structure of a crystal it
is possible to observe the interference pattern produced
by scattering particles with wave-length comparable to
the lattice spacing, i.e., of the order if 1Å. There are
three main classes of particles, which can be used:

• Photons, in particular X-rays, whose wave lengths
are around 1Å. The probability to scatter off the
crystal is not that large, hence they can penetrate
quite deeply into the crystal. The main scattering
occurs with the electrons. Hence, what is really
observed with X-rays is the periodic distribution of
electrons.

• Neutrons are also extensively used since they
mainly interact with the nuclei and the magnetic
moments.

• Electrons, have a very scattering probability with
anything in the crystal, hence they do not penetrate
very deep, but they are therefore an interesting tool
to probe the surface structure.

All forms of scattering share very similar basic prin-
ciples and can be applied to the scattering’s theory of
everything described in the next section.
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Scattering theory of everything

← crystal

Incident
beam Outgoing

beam

rk ⋅'ierk⋅ie

ϕϕϕϕ
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k
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[ ]

   '-

)(d)( 3

kkq

rrq rq

=

⋅∝ ⋅∫∫∫ i

V

enA

where n( r) is the distribution of scatterers 

The total scattered wave off V is  

FIG. 7: Diffraction set-up (picture from G. Frossati)

This formulation can describe any scattering process
in terms of the scattering amplitude A(~q). The entire

Physics is hidden in n(r), which contains the informa-
tion on the position of scatterers and their individual
scattering distribution and probability. In the following
we discuss the most important implications.

1D scattering pattern

Let’s suppose we have a 1D crystal along direction ŷ

with lattice spacing a and that the incoming wave ei ~kin·~r

is perpendicular to the crystal along x̂. We want to cal-
culate the scattered amplitude along direction ~kout. By
defining ~q = ~kout − ~kin, we can write the scattering am-
plitude as

A(~q) =
∫

V

n(~r)ei~q·~rdr3 (24)

If we assume that the crystal is composed of point-like
scatterers we can write:

n(x, y, z) =
C

N

N−1∑
n=0

δ(y − an)δ(x)δ(z), (25)

where C is simply a constant. Hence, by inserting 25
into 24, and defining ~q = (0, q, 0) we have

A(q) =
C

N

N−1∑
n=0

eiqan =
C

N

1− eiaqN

1− eiaq
=N→∞

{
C when q = 2πm/a
0 when q 6= 2πm/a

= Cδq, ~G (26)

~G = ŷ2πm/a is the reciprocal lattice and m an integer.
If we had a screen along ŷ we would see a diffraction
pattern along I(q) = |A(q)|2, since what is measured
experimentally is the intensity. In this simple case the
reciprocal lattice is the same as the real lattice, but with
lattice spacing 2π/a instead.

Point-like scatterers on a Bravais lattice in 3D

We start again with the general form of A(~q) from 24
and assume that our 3D crystal is formed by point-like
scatterers on a Bravais lattice ~R. Hence,

n(~r) =
C

N

N−1∑
n=0

δ3(~r − ~Rn), (27)

and

A(~q) =
C

N

N−1∑
n=0

ei~q· ~Rn =N→∞

{
C when ~q ∈ ~G

0 when ~q ∈/ ~G
= Cδ~q, ~G

(28)
In this case the Bravais lattice (or Real-Space) is

~Rn = n1 ~a1 + n2 ~a2 + n3 ~a3 (29)

and the reciprocal space ~Gm (or k-space) can be deduced
from ei ~Rn· ~Gm = 1, hence

~Gm = m1
~b1 + m2

~b2 + m3
~b3, (30)

where

~b1 =
2π ~a2 × ~a3

| ~a1 · ~a2 × ~a3| , ~b2 =
2π ~a3 × ~a1

| ~a1 · ~a2 × ~a3| and ~b3 =
2π ~a1 × ~a2

| ~a1 · ~a2 × ~a3|
(31)
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General case of a Bravais lattice with basis

The most general form for n(~r), when the atoms sits
on the basis { ~uj} along the Bravais lattice ~Rn is

n(~r) =
C

N

M,N−1∑

j=1,n=0

fj(~r − ~Rn − ~uj), (32)

where fj is the scattering amplitude for the atoms on
site ~uj and is typically proportional to the number of
electrons centered on ~uj . Now

A(~q) =
C

N

M,N−1∑

j=1,n=0

∫
fj(~r − ~Rn − ~uj)ei~q·~rd3r

=
C

N

M,N−1∑

j=1,n=0

∫
fj(~r)ei~q·~rd3r · ei~q· ~uj · ei~q· ~Rn

with ~r → ~r + ~Rn + ~uj

= CS(~q) · δ~q, ~G, (33)

where we have defined the structure factor S(~q) as

S(~q) =
M∑

j=1

∫
fj(~r)ei~q·~rd3r · ei~q· ~uj (34)

This is the most general form. It is interesting to re-
mark that in most case, experiments measure the inten-
sity I(~q) = |A(~q)|2, rather than the amplitude.

Example: the structure factor of a BCC lattice

The BCC crystal can be viewed as a cubic crystal with
lattice a and a basis. Therefore, all lattice sites are de-
scribed by

~Rn = n1ax̂ + n2aŷ + n3aẑ + ~uj , (35)

where ~u1 = 0(x̂ + ŷ + ẑ) and ~u2 = (a/2)(x̂ + ŷ + ẑ).
The structure factor then becomes:

S(~q) =
∑

j=1,2

∫
fj(~r)ei~q·~rei~q· ~uj d3r. (36)

As a simplification we suppose that f1 = f2 = f , then

S(~q) = (1 + e(ia/2)~q·(x̂+ŷ+ẑ))f̃(~q), (37)

where f̃(~q) is the Fourier transform of f . Hence,

A(~q) = S(~q) ·δ~q, ~G = f̃(~q)
{

2δ~q, ~G if q1 + q2 + q3 is even
0 if q1 + q2 + q3 is odd

(38)
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Bragg’s law

Equivalence between Bragg’s law for Miller planes and
the reciprocal lattice.

 

a 

b 

x 

y 

k1
out 

kin 

q1=kin-k1
out 

q2=kin-k2
out 

θ 

z 

(1,0,0) 

(0,1,0) Miller index 

From Bragg’s law we know that for the planes perpen-
dicular to x̂ or Miller index (1,0,0) the following diffrac-
tion condition applies:

nλ = 2a sin(θ). (39)

hence,

n
2π

a
= 2 sin(θ) · | ~kin| = |~q1|, (40)

since k = 2π/λ and we supposed that ~kin is perpendicular
to ẑ. This condition is equivalent to ~q1 = x̂2π/a ∈ ~G.
The same relation applies for the scattering of the plane
perpendicular to ŷ or Miller index (0,1,0) the following
diffraction condition applies:

nλ = 2b cos(θ). (41)

hence,

n
2π

b
= 2 cos(θ) · | ~kin| = |~q2|, (42)

or ~q2 = ŷ2π/b ∈ ~G.

Summary of scattering

We have an incoming wave ei ~kin·~r diffracting on some
sample with volume V and with a scattering probability
n(~r) inside V . For X-ray n is typically given by the elec-
tron distribution whereas for neutrons it is typically the

nuclear sites. The scattered wave amplitude with wave
number ~k is then

A(~k − ~kin) ∼
∫

V

d3rn(~r)ei(~k− ~kin)·~r (43)

This leads to three typical cases:

• Mono crystal diffraction: Point-like Bragg
peaks

FIG. 8: Point-like Bragg peaks from a single crystal. (Ref:
lassp.cornell.edu/lifshitz)

• Powder diffraction:

FIG. 9: Circle-like Bragg peaks from a powder with different
grain sizes

• Liquid diffraction:

FIG. 10: Pattern evolution for a complex molecule evolving
from a crystal-like structure to an isotropic liquid

The liquid diffraction is essentially the limiting case
of the powder diffraction when the grain size be-
comes comparable to the size of an atom.
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PROPERTIES OF SOLIDS AND LIQUIDS

The Theory of everything discussed in the first section
can serve as a guideline to illustrate which part of the
Hamiltonian is important for a given property. For in-
stance, when interested in the mechanical properties, the
terms containing the electrons can be seen as a pertur-
bation. However, when considering thermal conductivity,
for example, the kinetic terms of the ions and the elec-
trons are important.

In the following we will start by considering a few cases
and we will start with the single electron approximation.

single electron approximation

The single electron approximation can be used to de-
rive the energy and density of the electrons. This sim-
plest model will always serve as a reference and in some
cases the result is very close to the experimental value.
Alkali metals (Li, Na, K,..) are reasonably well described
by this model, when we suppose that the outer shell elec-
tron/atom (there is 1 for Li, Na, K) is free to move inside
the metal. This picture leads to the simple example of N
electrons in a box. This box can be viewed as a uniform
and positively charge background due to the atomic ions.
We suppose that this box with size L×L×L has periodic
boundary conditions, i.e.,

H = −
N∑

n=1

~2∇2
n

2me
with Ψ(0) = Ψ(L) (44)

For one electron the solutions can be written as

Ψ(~r) = ei~k·~r with E =
~2|~k|2
2me

and ~k =
2π

L
(n1, n2, n3),

(45)
where ni are the quantum numbers, which are positive
or negative integers. Since electrons are Fermions we
cannot have two electrons in the same state, except for
the spin degeneracy. Hence each electron has to have
different quantum numbers. This implies that 2π/L is
the minimum difference between two electrons in k-space,
which means that 1 electron uses up

(
2π

L

)D

(46)

of volume in k-space, if D is the dimension of the space.
If we now want to compute the electron density (number
of electrons per unit volume ne = N/LD) in the ground
state, which have k < kF (Fermi sphere with radius kF ),
we obtain:

ne = 2 · V D
kF
·
(

L

2π

)D

/LD, (47)

where the pre-factor 2 comes from the spin degeneracy.
Hence,

n3D
e =

k3
F

3π2
in D = 3 since V D

kF
=

4π

3
k3

F (48)

n2D
e =

k2
F

2π
in D = 2 since V D

kF
= πk2

F (49)

n1D
e =

2kF

π
in D = 1 since V D

kF
= 2kF , (50)

where the maximum energy of the electrons is

EF =
~2k2

F

2me
the Fermi energy (51)

This defines the Fermi energy: it is the highest energy
when all possible states with energy lower than EF are
occupied, which corresponds to the ground state of the
system. This is one of the most important defi-
nitions in condensed matter physics. The electron
density can now be rewritten as a function of the Fermi
energy, through eqs. (51) and (48) in 3D:

n(EF ) =
(2mEF )3/2

3π2~3
. (52)

We now want to define the energy density of states
D(E) as

n(EF ) ≡
∫ EF

0

D(E)dE =⇒ D(E) =
∂

∂E
n(E), (53)

which leads to

D(E) =
m
√

2mE

~3π2
in 3D (54)

D(E) =
m

~2π
in 2D (55)

D(E) =

√
2m

~2π2E
in 1D (56)

and illustrated below.

1D

2D

3D

D
(E

)

E

FIG. 11: Density of states in 1D, 2D and 3D

Properties of the free electron model

Physical quantities at T=0:
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• Average energy per electron: 〈E〉
n = 3

5EF

• Pressure: P = −∂(〈E〉V )
∂V = 2

5nEF , where 〈E〉V is
the total energy.

• Compressibility κ−1 = −V ∂P
∂V = 2

3nEF

Case 2: T 6= 0: In equilibrium

fFD =
1

e(E−µ)/kT + 1
, (57)

where the chemical potential is the energy to add one
electron µ = FN+1 − FN . µ = EF at T=0 and F is the
free energy.

The Sommerfeld expansion is valid for kT << µ and

〈H〉 =
∫ ∞

0

dEH(E)FFD(E) (58)

'
∫ µ

0

H(E)dE +
π2

6
(kT )2H ′(µ) + ... (59)

〈E〉 =
∫ ∞

0

dEED(E)FFD(E) (60)

'
∫ EF

0

ED(E)dE +
π2

6
(kT )2D(EF ) + ...(61)

〈n〉 = n(T = 0) (62)

⇒ µ(T ) ' EF − π2

6
(kT )2

D′(EF )
D(EF )

+ ... (63)

Physical quantities at T 6=0: Specific heat

CV =
1
V

∂〈E〉
∂T

)

µ,V

=
π2

3
k2TD(EF ) (64)

Hence, CV

T = γ, which is the Sommerfeld parameter.

Periodic potentials

The periodicity of the underlying lattice has important
consequences for many of the properties. We will walk
through a few of them by starting with the simplest case
in 1D.

Kronig-Penney model

Let us first consider the following simple periodic po-
tential in 1D.

H = −~
2∇2

2m
− V

∑
n

δ(x− na) (65)

The solutions for na < x < na+a are simply plane waves
and can be written as

ψ(x) = Aneikx + Bne−ikx. (66)

Now the task is to use the boundary conditions in order
to determine An and Bn. We have two conditions:

(1) ψ(na− ε) = ψ(na + ε) when ε → 0 and (67)

(2)
∫ na+ε

na−ε
(H − E)ψ(x)dx = 0 =⇒ − ~

2m (ψ′(na + ε)− ψ′(na− ε)) = V ψ(na).

Inserting 66 into condition (1) yields

{
An−1e

ikna + Bn−1e
−ikna = Aneikna + Bne−ikna = ψ(na) = ψn

An−1e
iknae−ika + Bn−1e

−iknaeika = ψn−1
(68)

=⇒
{

e−ikaψn − ψn−1 = Bn−1e
−ikan

(
e−ika − eika

)
eikaψn − ψn−1 = An−1e

ikan
(
eika − e−ika

) (69)

and
{

e−ikaψn+1 − ψn = Bne−ikane−ika
(
e−ika − eika

)
eikaψn+1 − ψn = Aneikaneika

(
eika − e−ika

) (70)

When taking the derivative of 66 then condition (2) implies

− ~
2m


ik Aneikan

︸ ︷︷ ︸
ψn+1−e−ikaψn

2i sin(ka)

−ik Bne−ikan

︸ ︷︷ ︸
ψn+1−eikaψn
−2i sin(ka)

−ik An−1e
ikan

︸ ︷︷ ︸
eikaψn−ψn−1

2i sin(ka)

+ik Bn−1e
−ikan

︸ ︷︷ ︸
e−ikaψn−ψn−1
−2i sin(ka)


 = V ψn, (71)
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hence,

− ~
2

2m

k

2 sin(ka)


2ψn+1 + 2ψn−1 + ψn (−e−ika − eika − eika − e−ika)︸ ︷︷ ︸

−4 cos(ka)


 = V ψn (72)

and finally,

ψn+1 + ψn−1 =
(
−2m sin(ka)

~2k
V + 2 cos(ka)

)

︸ ︷︷ ︸
W

ψn, (73)

Which can be rewritten as

ψn+1 + ψn−1 = Wψn (74)

This equation is often called the tight binding equation
as we will see in the next section. Finding a solution for
this equation is trivial since

ψn = eipan (75)

is a solution. This is easily verified by plugging (75) into
(74), which yields

eipaneipa + eipane−ipa = Weipan =⇒ W = eipa + e−ipa = 2 cos(pa). (76)

This equation has a solution only if

−2 ≤ W ≤ 2 (77)

We now recall that the Eigenstate of the original Hamil-
tonian is given by E(k) = ~2k2

2m , where eikx is the plane
wave between two δ functions, hence the dispersion re-
lation is equal to E(k) = ~2k2

2m as long as −2 ≤ W ≤ 2.
This condition will create gaps inside the spectrum as
illustrated in the graph below:

0 1 2 3

∆EW
<-

2

-2
<W

<2

W<-2

E
(k

)

π/a

FIG. 12: Dispersion curve for the Kronig-Penney model

Conclusion: a periodic potential creates gaps,
which leads to the formation of a band structure.
This is a very general statement which is true for almost
any periodic potential.

Tight binging approximation

Let us consider the general potential due to the ar-
rangement of the atoms on a lattice:

H = −~
2∇2

2m
+

∑
n

V0(~r − ~Rn)

︸ ︷︷ ︸
V (~r)

(78)

This is a very general form for a periodic potential assum-
ing that we only have one type of atoms. The periodicity
is given by the lattice index ~Rn. For a general periodic
potential Bloch’s theorem (see A& M for proof) tells us
that a solution to this Hamiltonian can be written as

ψk(~r) = ei~k·~ruk(~r), (79)

where uk is a periodic function such that uk(~r + ~Rn) =
uk(~r). This implies that

ψk(~r + ~Rn) = ei~k· ~Rnψk(~r) (80)

Let us now suppose that the solution of the Hamiltonian
H1atom = −~2∇2

2m +V0(~r− ~Rn) with one atom is φl(~r− ~Rn)
corresponding to the energy level εl, i.e., H1atomφl = εlφl.
Now comes the important assumption, which allows us
to simplify the problem: We suppose that
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〈φl(r −Rm)|H|φl(r −Rn)〉 = −tl


 ∑

~i=x̂,ŷ,ẑ

δ~m,~n+~i + δ~m,~n−~i


 + εlδ~m,~n (81)

Hence, only the nearest neighbor in every direction is
taken to be non-zero. Further, we assume that there is no
overlap between levels of the one atom potential, which
allows us to look for a general solution of the following
form for each energy level εl.

ψl(r) =
∑

~n

cl
~nφl(r −R~n) (82)

with eigenvalue El(k). To calculate El(k) we plug-in
this Ansatz into eq. (82) and obtain an equation for
the coefficients cl

~n, which leads to the following equation
when using the tight binding approximation given in eq.
(81).

cl
~mεl − tl

∑

~i=±x̂,ŷ,ẑ

cl
~m+~i

= El(k)cl
~m (83)

The solution of this equation are plane waves, which
can be verified readily by taking cl

~m = ei~k· ~Rm and plug-
ging it into the equation to obtain

El(k) = εl − tl(2 cos(kxax) + 2 cos(kyay) + 2cos(kzaz),
(84)

where ~a is the lattice constant in all 3 space directions:
~a = R~m+â − R~m. The energy diagram is illustrated in
fig. . The degeneracy of each original single atomic en-
ergy level εl is lifted by the coupling to the neighboring
atoms and leads to a dispersion curve or electronic band
structure.

-1.0 -0.5 0.0 0.5 1.0

ε
3

ε
2

−π/a k π/a

E

ε
1

FIG. 13: Dispersion curve for the tight binding model

This tight binding approximation is very successful
in describing the electrons which are strongly bound to
the atoms. In the opposite limit where the electrons or
more plane-wave like, the weak potential approximation
is more accurate:

Combining Bloch’s theorem with the tight binding
approximation

The tight binding approximation is very general and
can be applied to almost any system, including non-
periodic ones, where the tight binding elements can be
assembled in an infinite matrix. For the periodic case,
on the other hand, it is possible to describe the system
with a finite matrix in order to obtain the full disper-
sion relation. This is obtained by combining the Bloch
theorem for periodic potentials, where the wave-function
from (79) is again:

ψk(~r) = ei~k·~ruk(~r)

Instead of writing (82) we write the Bloch-tight-
binding solution as

ψk
l (r) =

∑

~n

ei~k·R~ncl
~nφl(r −R~n),

which now depends explicitly on the wavevector ~k. Using
Bloch’s theorem this implies that

cl
~n = cl

~m,

whenever ~n and ~m are related by a linear combination of
Bravais vectors. Moreover, the tight binding equation in
(83) is the same but with cl

~n replaced by cl
~nei~k·R~n

A

B

a

FIG. 14: Diatomic square crystal

We apply this to the simple example of a diatomic
square lattice of lattice constant a with alternating atoms
A and B shown in figure . We will further assume that
we have only one band l. Hence, the Bloch-tight-binding
solution is written as

ψk(r) =
∑

~n

ei~k·R~nc~nφ(r −R~n),
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where c~n takes on only to possible values due to Bloch’s
theorem: cA or cB . This leads to the following simplified
tight binding equations (assuming 〈φl(r −Rn)|H|φl(r −
Rn)〉 = εA or εB and t = −〈φl(r − Rn)|H|φl(r − Rm)〉
when n and m are nearest neighbors):

cAεA − t
∑

~i=±x̂,ŷ cBeia~k·~i = E(~k)cA

cBεB − t
∑

~i=±x̂,ŷ cAeia~k·~i = E(~k)cB

It is now quite straightforward to rewrite these equa-
tions in matrix form:

(
εA −t · g

−t · g∗ εB

)(
cA

cB

)
= E(~k)

(
cA

cB

)
,

with g = eia~k·x̂ + e−ia~k·x̂ + eia~k·ŷ + e−ia~k·ŷ. The disper-
sion relation or band structure is then simply given by
obtaining the eigenvalues of HBTB , where

HBTB =
(

εA −t · g
−t · g∗ εB

)
.

Weak potential approximation

In this case we consider the effect of the periodic po-
tential V (~r) as a perturbation on the plane wave solution

ψ0
k(~r) = ei~k·~r, with corresponding energies ε0k = ~2k2

2m and
Hamiltonian H0, i.e., H0ψ

0
k(~r) = ε0kψ0

k(~r). Since the ori-
gin of this energy dispersion relation can be chosen from
any site of the reciprocal lattice, we have ε0k+K = ε0k,
hence these energies are degenerate. This implies that
we have to use a degenerate perturbation theory. The
mathematical procedure is very similar to the tight bind-
ing approximation, but we now expand the solution ψ(~r)
of the full Hamiltonian H = H0 +V (~r) in terms of a sum
of plane waves ψ0

k(~r). Since ε0k+K = ε0k we will only use
two plane waves in this expansion: ψ0

k(~r) and ψ0
k+K(~r).

Hence,

ψ(~r) = αψ0
k(~r) + βψ0

k+K(~r), (85)

where the coefficients α and β have to be determined in
order to solve Schrödinger’s equation:

(H − E)ψ(~r) = 0. (86)

We can find the solution by first multiplying (86) by
(ψ0

k)∗(~r) and then integrating the equation over the whole
space which will lead to one equation, and we obtain a
second equation by multiplying (86) by (ψ0

k+K)∗(~r) and
then integrating of the whole space. This leads to

{
α

∫
d3r(ψ0

k)∗(~r)(H − E)ψ0
k(~r) + β

∫
d3r(ψ0

k)∗(~r)(H − E)ψ0
k+K(~r) = 0

α
∫

d3r(ψ0
k+K)∗(~r)(H − E)ψ0

k(~r) + β
∫

d3r(ψ0
k+K)∗(~r)(H − E)ψ0

k+K(~r) = 0 , (87)

where (assuming normalized plane waves in the integrals)




∫
d3r(ψ0

k)∗(~r)(H − E)ψ0
k(~r) =

∫
d3re−ikr(H0 + V (r)− E)eikr = ε0k + 0− E∫

d3r(ψ0
k)∗(~r)(H − E)ψ0

k+K(~r) =
∫

d3re−ikr(H0 + V (r)− E)ei(k+K)r =
∫

d3reiKr(ε0k+K + V (r)− E) = VK∫
d3r(ψ0

k+K)∗(~r)(H − E)ψ0
k+K(~r) = ε0k+K − E∫

d3r(ψ0
k+K)∗(~r)(H − E)ψ0

k(~r) = V−K ,
(88)

and V ~K =
∫

d3rei ~K·~rV (~r) (the Fourier transform),
∫

d3reiKr = 0 (for K 6= 0), and
∫

d3rV (~r) = 0. With coefficients
(88), equation (87) leads to the following couple of equations:

{
α(ε0k − E) + βVK = 0

αV−K + β(ε0k+K − E) = 0 ⇒
∣∣∣∣
ε0k − E VK

V−K ε0k+K − E

∣∣∣∣ = 0 ⇒ E = ε0k+ε0k+K

2 ±
√

(ε0k−ε0k+K)2

4 + VKV−K . (89)

Finally if ε0k = ε0k+K , we have E = ε0k ± |VK |, which
leads to a splitting 2|VK | of the energy levels at these
degenerate energies. For the example in figure , this
weak potential approximation would give us a splitting of
2|VK=2π/a| at k = −π/a and k = K − π/a = π/a. This
implies that the first order calculation of the energy split-
ting due to the weak periodic potential V (r) is equal to
twice the fourier transform of this potential evaluated at

the wavevector which corresponds to the two dispersion
curves which led to the degenerate energy level.

Localization

When, instead of having a purely periodic potential
disorder is included into the system, we no more have
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Bloch wave solutions but localization of the wave func-
tions occur. This is particularly important in low dimen-
sional systems and tends to suppress transport.

Electronic properties due to periodic potential

Density of states

Density of states in 1D:

D(E) =
∂n

∂E
' δn

δE

=
δn

δk

∣∣∣∣
∂E(k)

∂k

∣∣∣∣
−1

× 2︸︷︷︸
spin

× 2︸︷︷︸∑
±k

=
1
L

δN

δk

∣∣∣∣
∂E(k)

∂k

∣∣∣∣
−1

× 4

D(E) =
2
π

∣∣∣∣
∂E(k)

∂k

∣∣∣∣
−1

, (90)

where we used that δE = (∂E/∂k)δk and δk = 2π/L for
one electron, i.e., δN = 1.

In three dimensions (D=3) we have:

D(E) =
∂n

∂E
' δn

δE

=
∑

E(k)=E

δn

δk
|∇kE(k)|−1 × 2︸︷︷︸

spin

=
2

(2π)3

∫

E(k)=E

d2k |∇kE(k)|−1
, (91)

where we used δE = (∇kE(k)) · δk,
∑

E(k)=E(δk)2 →∫
E(k)=E

d2k, and δn/(δk)3 = 1/(2π)3. This result shows
that the density of state in the presence of a periodic
potential, i.e., for a crystal depends only on the slope of
the dispersion relation or the band structure.

Average velocity

The average velocity of an electron in a periodic po-
tential is given by the expectation value of the velocity,
i.e.,

〈v〉 = 〈ψ|v|ψ〉, (92)

where ψ is the wavefunction from the Hamiltonian with
periodic potential V , i.e., H = ~2∇2

2m + V . From Bloch’s
theorem (79) we can write ψ(r) = eikruk(r), where uk(r)
has the same periodicity as V (r). From the Schrödinger

equation Hψ = E(k)ψ it follows that uk is a solution of
(
~2

2m
(k − i∇)2 + V − E(k)

)

︸ ︷︷ ︸
Hk−E(k)

uk = 0. (93)

In order to calculate 〈v〉 we use first a first order pertur-
bation in k + q, where q is very small. Therefore, the
eigenvalue corresponding to Hk+q is E(k + q), which is
to first order

E(k + q) = E(k) + 〈uk|Hk+q −Hk|uk〉

= E(k) + 〈ψeikr| ~
2

2m
( q2

︸︷︷︸
→0

+2q(k − i∇))|e−ikrψ〉

= E(k) + 〈ψeikr|~
2

m
q(k − i∇))|e−ikrψ〉

= E(k) + 〈ψ|q~ ~
m

(−i∇)|ψ〉
= E(k) + q~〈ψ|v|ψ〉
= E(k) + q∇kE(k) (Taylor expansion)

⇒ 〈v〉 =
1
~
∇kE(k). (94)

Hence, the expectation value of the velocity is determined
by the slope of the dispersion relation. This also implies
that the sign of the average velocity depends on the sign
of ∂E/∂k.

Response to an external field and existence of holes and
electrons

The idea is to describe the average motion of an elec-
tron in the presence of an external field (electric, Eel, or
magnetic, B) in a semiclassical way. Hence, we want

m∗ d

dt
〈v〉 = F = (qEel or q〈v〉 ×B), (95)

where m∗ is an affective mass and q the charge. Using
(95) and (94) we have

m∗ ∂〈v〉
∂k

k̇ = qEel

1
~
m∗ ∂2E

∂k2
k̇ = qEel

⇒ ~k̇ = qEel = F, (96)

Where we defined the effective mass m∗ as

m∗ = ~2

∣∣∣∣
∂2E

∂k2

∣∣∣∣
−1

. (97)

If ∂2E
∂k2 is negative we need to change the sign of q in order

to remain consistent. Hence, when ∂2E
∂k2 > 0, the charge
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of an electron is q = −e but if ∂2E
∂k2 < 0 then q is positive

(+e). In this case we describe the particles as holes.
They represent missing electrons. With these definitions
of q and m∗, which is also called the band mass, the
semiclassical equations of motion of single electrons in a
periodic potential are simply given by eqs. (95) and (96).

In general, the effective mass is given by a tensor de-
fined as

m∗
αβ = ~2

∣∣∣∣
∂2E

∂kα∂kβ

∣∣∣∣
−1

, (98)

where α and β are the spatial directions. An important
consequence of this semiclassical description of the mo-
tion of electrons is the dependence of the effective mass
on the energy and the band structure. In some cases the
effective mass can even diverge (when ∂2E

∂k2 = 0). Sim-
ilarly the sign of the carriers also depends on the band
structure and the energy of the carriers. By definition we
call the bottom of an energy band and electronic band
when ∂2E

∂k2 > 0 and a hole band when at the top of the
energy band ∂2E

∂k2 < 0.

Bloch oscillations

In the presence of an electric field and a periodic po-
tential we can use the equation of motion (96), i.e.,

~k̇ = −eEel ⇒ k = −eEel

~
t, (99)

but in a periodic potential and in the tight binding ap-
proximation the energy is given by E(k) = −2t0 cos(ka),
where a is the lattice constant and t0 the nearest neighbor
overlap integral. Hence, since v = ṙ and 〈v〉 = ~−1∂E/∂k
we have

〈r〉 =
2t0
eEel

cos(
aeEelt

~
). (100)

This means that the average position of the electrons
oscillates in time (Bloch oscillations). In artificial struc-
tures these Bloch oscillations are typically of the order of
1THz.

Semiclassical motion in a magnetic field

In the presence of a magnetic field (B), we can describe
the semiclassical trajectories in k-space using (96), i.e.,

~k̇ = q〈v〉 ×B. (101)

Hence, only the values of k perpendicular to the magnetic
field will change, which we denote by k⊥. The component
parallel to the field, k‖ is not affected by B. During a
small time difference

δt = t2 − t1 =
∫ t2

t1

dt =
∫ k2=k(t2)

k1=k(t1)

dk⊥/|k̇|. (102)

Using (101) and (94) and since k̇ is perpendicular to 〈v〉
and B, (̇k) ∼ ∂E/∂k‖ we obtain

δt =
~2

qB

∫ k2

k1

dk⊥
∂E/∂k‖

=
~2

qB

d

dE

∫ k2

k1

k‖dk⊥. (103)

For a complete turn this leads to

T =
~2

qB

d

dE

∮
k‖dk⊥

︸ ︷︷ ︸
S

. (104)

Here S is the area enclosed by an orbit in k-space. This
orbit corresponds to an equipotential line perpendicular
to the magnetic field.

Let’s suppose for simplicity that the effective mass ten-
sor m∗ is diagonal and given by

m∗ =




mx 0 0
0 my 0
0 0 mz


 (105)

and that the energy dispersion is harmonic (which is usu-
ally true at a band extremum, i.e.,

E(k) =
~2k2

x

2mx
+
~2k2

y

2my
+
~2k2

z

2mz
. (106)

If we assume that the magnetic field is along z and that
the average effective mass perpendicular to B is given by
m⊥, we can rewrite (106) as

E(k) =
~2k2

⊥
2m⊥

+
~2k2

‖
2m‖

, (107)

where k2
⊥ = k2

x+k2
y. Using (104) and (107 we then obtain

S = πk2
⊥ = π(2m⊥E/~2)− πk2

‖m⊥/m‖

⇒ dS

dE
=

π2m⊥
~2

⇒ ωc =
2π

T
=

qB

m⊥
, (108)

which is the cyclotron frequency. Hence, the cyclotron
frequency depends on the average effective mass perpen-
dicular to the magnetic field. This allows us to measure
the effective mass along different directions, simply by
changing the direction of the magnetic field and by mea-
suring the cyclotron frequency.

Quantization of the cyclotron orbit: Landau levels

In quantum mechanics the energies of these cyclotron
orbits become quantized. To see this we can write the
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Hamiltonian of an electron in a magnetic field in the har-
monic approximation (107) as

H =
1

2m‖
P 2
‖ +

1
2m⊥

(P⊥ + qA)2, (109)

where B = ∇×A ⇒ A = −Byx̂ in the Landau Gauge if
B is along ẑ. In analogy to the harmonic oscillator, the
eigenvalues of (109) are then given by

En,k‖ =
~2k2

‖
2m‖

+ (n + 1/2)~
qB

m⊥︸︷︷︸
ωc

. (110)

These eigenvalues can be found by writing
the wavefunction as ψ = eikxxφn(y − y0)eik‖z

with y0 = −~kx

qB , which leads to Hψ =(
~2k2

‖
2m‖

+ P 2
y

2m⊥
+ 1

2m⊥
(

qB
m⊥

)2

(y − y0)2
)

φn(y − y0).

In the y direction this is simply the harmonic oscillator
with eigenvalues (n + 1/2)~ωc and in the direction
parallel to the field we have a plane wave so that the
total energy is given by (110). The quantized levels
(n + 1/2)~ωc due to the magnetic field are called the
Landau levels.

Magneto-oscillations

The quantization of the energy levels in the presence
of a magnetic field will lead to oscillations of almost any
experimental quantity (resistance, thermal conductivity,
magnetization, ...) as a function of B. These oscillations
can be understood by looking at the density of states
due to the quantization (110). Indeed, (110) leads to a
peak in the density of states whenever E = (n+1/2)~ωc.
Therefore, whenever the component of the Fermi energy
perpendicular to the magnetic field is equal to one of
these quantized levels there is an extremum in the quan-
tity measured. The distance between two of these ex-
trema is given by

~
qB1

m⊥
(n1 + 1/2) = E⊥

F = ~
qB2

m⊥
(n2 + 1/2)

⇒ 1
B1

− 1
B2

= ~
q

m⊥
( E⊥

F︸︷︷︸
~2

2πm⊥ ·S

)−1(n2 − n1)

⇒ ∆
(

1
B

)
=

2πq

~
S−1, (111)

where the maximum S is S =
∮

k‖dk⊥ = π(kF
x )2 =

π(kF
y )2 and E⊥

F = ~2(kF
x )2

2m⊥
= ~2S

2πm⊥
. Hence, the Magneto-

oscillations are periodic in 1/B and the period depends
on S. An example of these oscillations in resistance is
shown in figure 15 as a function of B and 1/B.
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FIG. 15: Magneto-resistance oscillations in a GaAs/AlGaAs
quantum well.

PHONONS: LATTICE VIBRATIONS

In general:

Mül = −
∑
m

φlmum, (112)

where ul are the deviations from the original lattice sites
and φlm are the elastic constants who have to obey this
sum rule

∑
m φlm = 0 (translation invariance). In words,

equ. 112 simply means that the force producing the devi-
ation on lattice site l only depends on the deviations from
the other lattice sites. No deviation=no force (equilib-
rium). This equation is very general and does not assume
that we have a periodic lattice, but in order to calculate
things we will use a periodic lattice and start with 1D.
In fig. 16 we illustrate two typical displacement waves in
2D.
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K

2−su 1−su su 1+su
2+su

K

 

FIG. 16: Two types of lattice displacement waves in 2D, trans-
verse and longitudinal modes
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Mono-atomic phonon dispersion in 1D

In 1D equ. 112 for nearest neighbors and using∑
m φlm = 0 simply reduces to

Mül = K(ul+1 − 2ul + ul−1) (113)

in the simplest approximation, where only the nearest
neighbors are important and where the elastic constants
are the same. Further we assume that the equilibrium
case has a lattice constant a. In this case the solution
can be written as

ul = eikla−iωt

=⇒ Mω2 = 2K(1− cos(ka)) = 4K sin2(ka/2)

=⇒ ω = 2
√

K
M | sin(ka/2)|

(114)

which is illustrated below In this case there is only a
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FIG. 17: Phonon dispersion for a mono-atomic lattice

single dispersion mode, which is called the acoustic mode
or branch.

Optical branch

The situation is quite different when there is an addi-
tion symmetry breaking in the problem. In the 1D case
this occurs when there is a second species with a different
mass, for example, or when there are two different elastic
constants. Let us discuss the case where there are two
different masses but only one elastic constant C:

{
M1ül = C(ul+1 − 2ul + ul−1)
M2v̈l = C(vl+1 − 2vl + vl−1)

(115)

To solve this set of equation we use a solution of the
form ul = ueikla−iωt and vl = veikla−iωt, which inserted
into eq. 115leads to

ω =
√

C

√
M1 + M2 ±

√
M2

1 − 2M1M2 cos(ka) + M2
2

M1M2

(116)
The following two limiting cases can easily be obtained

in the limit of small k.

1. Acoustic mode:

ω '
√

C

2(M1 + M2)
ka (117)

2. Optical mode:

ω '
√

2C(M1 + M2)
M1M2

(118)

FIG. 18: Phonon dispersion for a di-atomic lattice and the
more general 3D case

Experimental determination of the phonon
dispersion

In order to determine the dispersion curve of the
phonons there is essentially one trick. The idea is to
look for inelastic scattering of other particles, which are
typically photons or neutrons. The incoming particles
scatter with phonons, thereby transferring some of their
energy and momentum to phonons. From the energy and
momentum of the out-coming particles it is then possible
to infer the phonon absorbtion. This process can also be
inverted in that the energy of the out-coming particle in-
creases by absorbtion of a phonon. In general, the energy
conservation can be expressed as
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~ωin(~k)− ~ω′out(~k′)︸ ︷︷ ︸
in/out particle

= ±~Ω( ~K)︸ ︷︷ ︸
phonon

(119)

and the momentum conservation as

~~k − ~~k′ = ±~ ~K + ~~G, (120)

where ~G is a reciprocal lattice vector. A neutron scat-
tering experiment is illustrated below.

FIG. 19: Inelastic neutron scattering experiment in Chalk
River used to determine the phonon dispersion

Origin of the elastic constant

From the TOE we have the potential term due to the
interactions between ions.

Hions = −
Nions∑

i

~2∇2
i

2mi
+

Nions∑

i<j

qiqj

|ri − rj | (121)

This leads to a potential of the form

φ(r1, . . . , rn) = φ(r0
1, . . . , r

0
n)︸ ︷︷ ︸

Cohesive energy
Equilibrium pos.

+
∑

i

∂φ

∂ri

)

r0
i

displacment︷︸︸︷
ui

︸ ︷︷ ︸
0

+
1
2

∑

i,j

∂2φ

∂ri∂rj




r0
i︸ ︷︷ ︸

φi,j

uiuj + · · · (122)

The linear term has to be zero for stability reasons (no
minimum in energy otherwise). The classical equation
of motion is then simply given by equ. 112, because
~F = −~∇φ. To solve this equation in general, one can
write a solution of the form

~ul = ~ε · ei~k· ~Rl−iωt, (123)

where ~Rl are the lattice sites. One then has to solve
for the dispersion relation ω(~k) in all directions, as illus-

trated in fig. 18. From 123 we have

mω2~ε =
∑
m

φl,mei~k·( ~Rl− ~Rm)

︸ ︷︷ ︸
φ̂(k)

·~ε (124)

,
where φ̂(k) is a 3× 3 matrix, since φlm too. This leads

to an eigenvalue equation for ω2 with three eigenvalues:
ω2

L (for ~k ‖ ~ε) and ω2
T (1,2) (for ~k ⊥ ~ε). Hence, we have

on longitudinal mode and two transverse modes and all
phonon modes can be described by a superposition of
these.

If we have two different masses, we have two addi-
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tional equations of the form (124). This leads to the
general case, where one has two branches the optical one
and the acoustic one and each is divided in longitudinal
and transverse modes. The acoustic branch has always
a dispersion going to zero at k = 0, whereas for the op-
tical mode at k = 0 the energy is non-zero. The acous-
tic phonons have a gapless excitation spectrum and can
therefore be created at very low energy as opposed to
optical phonons which require a miniumum energy to be
excited.

Quantum case

While many of the properties, like the dispersion rela-
tion, can be explained in classical terms, which are simply
vibrations of the crystal ions, others, such as statistical
properties need a quantum mechanical treatment.

Phonons can simply be seen as harmonic oscillators
which carry no spin (or spin 0). They can, therefore, be
accurately described by bosons with energy

En(k) = ~ω(k)(n + 1/2). (125)

We can now calculate the density of states of phonons,
or the number of states between ω and ω + dω, i.e.,

D(ω)dω =
1

(2π)3

∫ ω+dω

ω

dk (126)

but dω = ∇kωdk, hence

D(ω) =
1

(2π)3

∫

ω=const

dSω

|∇kω| (127)

Let us now suppose that we have 3 low energy modes
with linear dispersion, one longitudinal mode ωL(k) =
cLk and two transverse modes ωT (k) = cT k, hence
∇ωL,T (k) = cL,T , which implies that

∫
dS = 4πk2. This

leads to a density of state

DL,T (ω) =
k2

2π2cL,T
=

ω2

2π2c3
L,T

(128)

or

Dtot(ω) =
ω2

2π2

(
1
c3
L

+
2
c3
T

)

︸ ︷︷ ︸
1

c3

(129)

in the isotropic case.
From statistics we know that the probability to find a

state at E = En is given by the Boltzmann distribution
Pn ∼ e−En/kBT , with normalization

∑
Pn = 1. Hence,

Pn = e−n~ω/kBT (1− e−~ω/kBT ) (130)

simply from the normalization condition. We can now
calculate the average energy at ω,

E(ω) =
∑

n

EnPn = (1− e−~ω/kBT )~ω
∞∑

n=0

(n + 1/2)(e−~ω/kBT )n

= ~ω




1
2

+
1

e~ω/kBT − 1︸ ︷︷ ︸
〈n〉


 (131)

here 〈n〉 is the expectation value of quantum number n
at T , which is nothing else but the Bose Einstein distri-
bution. As is well known, Bosons obey the Bose-Einstein
statistics, where he Bose-Einstein distribution function is
given by

fBE =
1

eE/kBT − 1
(132)

Important: at T = 0, fBE is simply a delta function
δ(E). This is the Bose-Einstein condensation, where the

zero energy state is totally degenerate (this does sup-
pose that there are no interactions between bosons, with
interactions the delta function will be a little broader).
The total average energy can then be calculated from the
density of states as:

〈E〉 =
∫

dωD(ω)E(ω) (133)

This also allows us to calculate the specific heat CV =
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d
dT 〈E〉 in the isotropic case and in the linear dispersion
approximation D(ω) ∼ ω2/c3, hence

CV =
d

dT

∫ ∞

0

dωD(ω)E(ω)

=
d

dT

∫ ∞

0

dωD(ω)
~ω

e~ω/kBT − 1

=
d

dT

3
2π2

1
c3︸︷︷︸

1
3

(
1

c3
L

+ 2
c3
T

)

∫ ∞

0

dω
~ω3

e~ω/kBT − 1︸ ︷︷ ︸
∫∞
0 dω x3

ex−1
(kBT )4

~3

=
d

dT

3(kBT )4

2π2(c~)3

∫ ∞

0

dω
x3

ex − 1︸ ︷︷ ︸
π4/15

=
2π2kB

5

(
kBT

~c

)3

(134)

where we had defined the variable x = ~ω/kBT and
where 1/c3 is the average over the 3 acoustic modes.

The Debye model assumes a linear dispersion (ω = ck)
and uses the analogy to electrons where (n = k3

F /3π2) to
define kD. Since phonons have no spins one obtains:

n =
k3

D

6π2
and

kBΘD = ~ωD = ~ckD (ΘD: Debye temperature)

=⇒ CV =
12π4kB

5

(
T

ΘD

)3

· n (135)

The typical Debye temperature is of the order of 100K.
Finally, combining this result with the contributions from
electrons (64), we obtain the expression valid for low tem-
peratures:

CV = γT︸︷︷︸
electrons

+ βT 3

︸︷︷︸
phonons

(136)

TRANSPORT (BOLTZMANN THEORY)

Transport allows us to calculate transport coefficients
such as resistances and thermal conductivities. While
several transport theories exist, Boltzmann’s approach
is the most powerful and applies to most situations in
condensed matter. The main idea in Boltzmann theory
is to describe the electrons by a distribution function g.
In equilibrium g is simply the Fermi-Dirac distribution
function fFD. In general, g(r, k, t) and at t−dt it can be
written as:

g(r − ṙdt, k − k̇dt, t− dt) (137)

If the electrons flow without collisions,
(137)=g(r, k, t) = fFD. The situation changes if
collisions (f. ex. between electrons, impurities, or
phonons) are included. In this case

g(r, k, t)− g(r − ṙdt, k − k̇dt, t− dt) = δgcoll. (138)

where gcoll. describes the collisions. gcoll. = 0 without
collisions. Expanding (137) to first order and using (138)
we obtain

ṙ
∂g

∂r
+ k̇

∂g

∂k
+

∂g

∂t︸ ︷︷ ︸
dg
dt

=
dg

dt

)

coll.

(139)

This is Boltzmann’s equation.

Relaxation time approximation

Solving Boltzmann’s equation is not easy in general
and therefore approximations are used. The simplest one
is the relaxation time (τ) approximation. In this approx-
imation:

dg

dt

)

coll.

= −1
τ

(g − fFD)

=⇒ dg

dt
= −1

τ
(g − fFD) (140)

It is quite intuitive to see from where this approxima-
tion comes from, since a kick at t = 0 would lead to
solution of the form

g(t) =
e−t/τ

τ
+ fFD → fFD (when t = ∞) (141)

This is the basic framework, which allows us to eval-
uate the effect of external fields on the system and to
estimate the linear response to them.

Case 1: ~F = −e ~E

In this case we look for a response in current density
and define the conductivity tensor in linear response as

~j = σ ~E

⇒ jα = σαβEβ = −2e

∫
d3k

(2π)3
vαg(r, k, t). (142)

Since we are interested in the case of a homogenous
uniform electric field, ∂g/∂t = 0 and ∂g/∂r = 0 and
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~k̇ = −eE, Boltzmann’s equation (139) in the relaxation
time approximation becomes

k̇
∂g

∂k︸︷︷︸
−e ~E
~

∂g
∂ε · ∂ε

∂~k

= −1
τ

(g − fFD)

⇒ g =
e ~Eτ

~
∂g

∂ε︸︷︷︸
'− ∂fF D

∂µ

· ∂ε

∂~k︸︷︷︸
~~v

+fFD (143)

Here we used the first order approximation ∂g/∂ε '
−∂fFD/∂µ, which is justified if the correction g−fFD is
smoother than ∂fFD/∂µ, which is close to a delta func-
tion when kT << EF . Hence, using (143) to evaluate
the current (142), we obtain

jα = 2e

∫
d3k

(2π)3
vαeτ ~E · ~v ∂fFD

∂µ
+ ∼ (

∫
vαfFD)

︸ ︷︷ ︸
=0

, (144)

which leads to

σαβ =
∂jα

∂Eβ
= 2e2

∫
d3k

(2π)3
vαvβ

∂fFD

∂µ
τ(ε) (145)

This is one of the most important expressions for the
conductivity. Since ∂fFD/∂µ is almost a delta function
for kT << EF this expression shows that only electrons
close to the chemical potential µ will significantly con-
tribute to transport. It is possible to evaluate (145) in
simple cases.

Let’s assume that τ does not depend on the energy,
then we can rewrite (145) as

σαβ = 2e2τ

∫
d3k

(2π)3
vα

∂ε

~∂kβ

(
−∂fFD

∂ε

)

= e2τ

∫
d3k

(2π)3
vα

(
−∂fFD

~∂kβ

)

= e2τ

∫
d3k

(2π)3
∂vα

∂kβ︸︷︷︸
~δαβ/m∗

fFD/~−
∫

k⊥β

fFDvα

︸ ︷︷ ︸
=0

=
e2τ

m∗

∫
2

d3k

(2π)3
fFD

︸ ︷︷ ︸
n

δαβ (146)

• If τ(ε) = τ we therefore obtain the most important
formula of conductivity (the Drude formula)

σαβ =
e2τn

m∗ δαβ (147)

Using the same approach but in the presence of a mag-
netic field, ~F = −e ~E−e~v× ~B, we can derive an equivalent
expression for σαβ , but in this case the off-diagonal com-
ponent is not zero anymore. (See assignment).

Diffusion model of transport (Drude)

In the case where the scattering of electrons is domi-
nated by inelastic diffusion, we can write a very simple
form for the conductivity or resistivity tensor. Indeed, in
a diffusive regime the average velocity is directly propor-
tional to the external force and to the inverse effective
mass. The proportionality coefficient is then simply the
scattering probability 1/τ . Hence,

m∗

τ
~v = ~F = −e ~E − e~v × ~B (148)

If we suppose that the magnetic field is small and in
the ẑ direction and ~E along x̂, then eq. (148) becomes

e ~E︸︷︷︸
eEx

= −m∗

τ
~v

︸ ︷︷ ︸
'm∗jx

τen

−e~v × ~B︸ ︷︷ ︸
'jyB/n

Ex =
m∗

ne2τ
jx +

B

ne
jy (149)

Since in general ~E = ρ~j and because the resistivity
along ~B is not affected by the magnetic field we can write
for ~B in the ẑ direction,

ρ =




m∗
ne2τ

B
ne 0

− B
ne

m∗
ne2τ 0

0 0 m∗
ne2τ


 = σ−1 (150)

This is the famous Drude formula in a magnetic field.
This formula is in fact equivalent to the relaxation time
approximation in the Boltzmann theory (147).

Case 2: Thermal inequilibrium

We now consider the case, where we also have a spacial
gradient. Hence (139) and (140) become

ṙ
∂g

∂r︸︷︷︸
'~v· ∂f

∂~r

+ k̇
∂g

∂k︸︷︷︸
'−e ~E·~v ∂f

∂ε

= −1
τ

(g − fFD), (151)

here we used again that g − f is smooth so that ∂(g −
f)/∂ε << ∂f/∂ε. Moreover, since

fFD =
1

e(ε−µ(r))/kT (r) + 1

⇒ ∂f

∂r
=

∂f

∂ε

(
−∇rµ− (ε− µ)

∇rT

T

)

⇒ g = ~v · ∂f

∂ε
τ

(
e ~G + (ε− µ)

∇rT

T

)
+ fFD,(152)
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where we defined the generalized field e ~G = e ~E+~∇µ(r)
and the external forces are now −e ~E, ~∇µ(r) and ~∇T (r),
corresponding to an external electrical field, a gradient
in the chemical potential (f.ex. a density gradient), and
a temperature gradient. The electrical current density is
the same as before but is now expressed (in the linear
response) in terms of the additional external fields:

~je = −2e

∫
d3k

(2π)3
~vg ' L11 ~G + L12

(
−~∇T

T

)
. (153)

An expression for the thermal current can be de-
duced from the following thermodynamical relation dQ =
TdS = dU − µdN , hence

~jQ = 2e

∫
d3k

(2π)3
(ε− µ)~vg ' L21 ~G + L22

(
−~∇T

T

)
.

(154)
Here Lαβ are the linear transport coefficients and σ =

L11. We now want to evaluate these expressions in the
low temperature limit, where we can use ∂fFD/∂µ '
δ(ε − εF ), hence the expression for σ in (145) can be
written as

σαβ(x) =
∂jα

∂Eβ
= 2e2

∫
d3k

(2π)3
vαvβτ(x)δ(ε− x), (155)

where σαβ = σαβ(εF ). We will use this new function σ(x)
to express the other transport coefficients. For instance
in linear response,

e2L22
αβ =

∂jQ

∂
(
−~∇T

T

)
β

= 2e2

∫
d3k

(2π)3
vαvβ(ε− µ)2τ(ε)

∂f

∂µ

=
∫

dx
∂f

∂µ
(ε− µ)2σαβ(ε). (156)

Using that (εF − µ) ' π2

6 (kT )2D′(εF )/D(εF ), we ob-
tain (derivation in assignment).

L22
αβ =

π2

3e2
(kT )2σαβ(εF ) and similarly

L12
αβ = L21

αβ = −π2

3e
(kT )2σ′αβ(εF )

L11
αβ = σαβ(εF ) (157)

Physical quantities

• Thermal conductivity (κ): jQ = κ(−∇T )

Is obtained from eqs. (153,154,157), by setting je =
0, hence at low temperatures, L11 ~G+L12

(
− ~∇T

T

)
=

0 and

jQ = (L12(L11)−1L12

︸ ︷︷ ︸
∼O(T 4)'0

−L22)

(
−

~∇T

T

)

= −L22

T
∇T

⇒ καβ =
π2

3
k2T

e2
σαβ (158)

This is the well known Wiedemann-Franz law

• Thermopower (Q): ~E = Q∇T with je = 0. In
this case

Q =
L12

L11T
=

π2

3
k2T

e

σ′

σ
(159)

• Peltier effect (∇T = 0): jQ = Πje ⇒ Π =
L21/L11 = TQ

Historical note:
The Seebeck effect: The discovery of thermoelectricity

dates back to Seebeck [1] (1770-1831). Thomas Johann See-
beck was born in Revel (now Tallinn), the capital of Estonia
which at that time was part of East Prussia. Seebeck was a
member of a prominent merchant family with ancestral roots
in Sweden. He studied medicine in Germany and qualified
as a doctor in 1802. Seebeck spent most of his life involved
in scientific research. In 1821 he discovered that a compass
needle deflected when placed in the vicinity of a closed loop
formed from two dissimilar metal conductors if the junctions
were maintained at different temperatures. He also observed
that the magnitude of the deflection was proportional to the
temperature difference and depended on the type of conduct-
ing material, and does not depend on the temperature distri-
bution along the conductors. Seebeck tested a wide range of
materials, including the naturally found semiconductors ZnSb
and PbS. It is interesting to note that if these materials had
been used at that time to construct a thermoelectric genera-
tor, it could have had an efficiency of around 3% - similar to
that of contemporary steam engines.

The Seebeck coefficient is defined as the open circuit volt-
age produced between two points on a conductor, where a
uniform temperature difference of 1K exists between those
points.

The Peltier effect: It was later in 1834 that Peltier[2] de-
scribed thermal effects at the junctions of dissimilar conduc-
tors when an electrical current flows between the materials.
Peltier failed however to understand the full implications of
his findings and it wasn’t until four years later that Lenz[3]
concluded that there is heat adsorption or generation at the
junctions depending on the direction of current flow.

The Thomson effect: In 1851, Thomson[4] (later Lord
Kelvin) predicted and subsequently observed experimentally
the cooling or heating of a homogeneous conductor resulting
from the flow of an electrical current in the presence of a
temperature gradient. This is know as the Thomson effect
and is defined as the rate of heat generated or absorbed in a
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FIG. 20: Thermoelectric cooling (left): If an electric current
is applied to the thermocouple as shown, heat is pumped from
the cold junction to the hot junction. The cold junction will
rapidly drop below ambient temperature provided heat is re-
moved from the hot side. The temperature gradient will vary
according to the magnitude of current applied. Thermoelec-
tric generation (right): The simplest thermoelectric generator
consists of a thermocouple, comprising a p-type and n-type
thermoelement connected electrically in series and thermally
in parallel. Heat is pumped into one side of the couple and
rejected from the opposite side. An electrical current is pro-
duced, proportional to the temperature gradient between the
hot and cold junctions.

single current carrying conductor subjected to a temperature
gradient.

[1] Seebeck, T.J., 1822, Magnetische Polarisation der Met-
alle und Erzedurch Temperatur-Differenz. Abhand Deut.
Akad. Wiss. Berlin, 265-373.

[2] Peltier, J.C., 1834, Nouvelles experiences sur la calo-
riecete des courans electriques. Ann. Chem., LVI, 371-387.

[3] See Ioffe, A.F., 1957, Semiconductor Thermoelements
and Thermoelectric Cooling, Infosearch, London.

[4] Thomson, W., 1851, On a mechanical theory of thermo-
electric currents, Proc.Roy.Soc.Edinburgh, 91-98.

SEMICONDUCTORS

Semiconductors are distinguished from metals in that
they have a gap at the Fermi surface, and are distin-
guished from insulators in that the gap is smaller, which
is ambiguous. But generally, if the gap is close to 1eV
it’s a standard semiconductor. If the gap is close to 3eV
it’s a wide band gap semiconductor and above 6eV it’s
usually called an insulator. Typically, the distinction is
simply made from the temperature dependence of the
conductivity. If σ → 0 for T → 0 it’s a semiconductor or
an insulator but the material is a metal if σ → σ0 > 0.
However, even at room temperatures the conductivities
of pure materials differ by many orders of magnitude
(σmetal >> σsemi >> σinsu).

metal insulatorsemiconductor

FIG. 21: There is no band gap at the Fermi energy in a metal,
while there is a band gap in an insulator. Semiconductors on
the other hand have a band gap, but it is much smaller than
those found in insulators.

Band Structure

Clearly the band structure of the semiconductors is
crucial for the understanding of their properties and their
device applications. Semiconductors fall into several cat-
egories, depending upon their composition, the simplest,
type IV include silicon and germanium. The type refers
to their valence.

The band structure is quite rich and shown in figure
(22) for silicon. Germanium is very similar to Si and does

FIG. 22: Band structure of Si. (Figures from
ioffe.rssi.ru/SVA/NSM/Semicond)

not have a direct gap either. In general the dispersion
relation can be approximated with the use of the effective
masses, noting that

1
m∗

ij

=
1
~2

∂2E(~k)
∂ki∂kj

, (160)

hence

E(~k) = Ec + ~2

(
k2

x + k2
y

2m∗
t

+
k2

x

2m∗
l

)
(161)

for the conduction band and
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FIG. 23: Band structure of Ge.

E(~k) = Ev − ~
2~k2

h

2m∗
h

− ~
2~k2

lp

2m∗
lp

' Ev − ~
2~k2

2m∗
p

(162)

for the valence band, where there are typically two bands,
the heavy holes and the light holes. These dispersion re-
lations are generally good approximations to the real sys-
tem. In addition, the valence band has another band due
to spin-orbit interaction. However, at zero wavenumber
(~k = 0) this band is not degenerate with the other two
light and heavy hole bands.

m∗
n m∗

p m∗
t m∗

l m∗
h m∗

lp gap [eV]

Si 0.36 0.81 0.19 0.98 0.49 0.16 1.12

Ge 0.22 0.34 0.0815 1.59 0.33 0.043 0.661

GaAs 0.063 0.53 0.063 0.063 0.51 0.082 1.424

TABLE I: The effective masses in units of the free electron
mass for the conduction band, the valence band, the trans-
verse and longitudinal part in the conduction band and the
heavy and light hole mass in the valence band.

The situation in III-V semiconductors such as GaAs
is similar but the gap is direct. For this reason GaAs
makes more efficient optical devices than does either Si
or Ge. A particle-hole excitation across the gap can read-
ily recombine, emit a photon (which has essentially no
momentum) and conserve momentum in GaAs; whereas,
in an indirect gap semiconductor, this recombination re-
quires the addition creation or absorption of a phonon
or some other lattice excitation to conserve momentum.
For the same reason, excitons live much longer in Si and
especially Ge than they do in GaAs.

Electron and hole densities in intrinsic (undoped)
semiconductors

At zero temperature, the Fermi energy lies in the gap,
hence there are no holes (p = 0) in the valence band and

FIG. 24: Band structure of GaAs. Note the direct, Γ → Γ,
minimum gap energy. The nature of the gap can be tuned
with Al doping.

conduction

valence

hω ∼ E
g

phonon

photon

v  k ≅ ωs

ck ≅ ω ≅ E  / hg

FIG. 25: A particle-hole excitation across the gap can readily
recombine, emit a photon (which has essentially no momen-
tum) and conserve momentum in a direct gap semiconductor
(left) such as GaAs. Whereas, in an indirect gap semiconduc-
tor (right), this recombination requires the additional creation
or absorption of a phonon or some other lattice excitation to
conserve momentum.

no electrons in the conduction band (n = 0). At non-
zero temperatures, the situation is very different and the
carrier concentrations are highly T -dependent since all of
the carriers in an intrinsic (undoped) semiconductor are
thermally induced.

In this case, the Fermi-Dirac distribution defines the
temperature dependent density

n =
∫ Etop

Ec

DC(E)fFD(E)dE '
∫ ∞

Ec

DC(E)fFD(E)dE

(163)

p =
∫ Ev

−∞
DV (E)(1− fFD(E))dE (164)

To proceed further we need forms for DC and DV . Recall
that in the parabolic approximation Ek ' ~2~k2

2m∗ we found

material τexciton
GaAs 1ns(10−9s)

Si 19µs(10−5s)

Ge 1ms(10−3s)

TABLE II:
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FIG. 26: Partially filled conduction band and hole band at
non-zero temperature

that D(E) = (2m∗)
3
2

2π2~3
√

E. Thus,

DC(E) =
(2m∗

n)
3
2

2π2~3

√
E − EC (165)

DV (E) =

(
2m∗

p

) 3
2

2π2~3

√
EV − E (166)

for E > EC and E < EV respectively, and zero otherwise
EV < E < EC .

In an intrinsic (undoped) semiconductor n = p, and so
EF must lie in the band gap. Physically, this also means
that we have two types of carriers at non-zero temper-
atures. Both contribute actively to physical properties
such as transport.

E
F

E
C

E
V

V
D

f(E)

D
C

C
f(E)D  (E)

V
(1 - f(E))D  (E)

FIG. 27: The density of states of the electron and hole bands

If m∗
n 6= m∗

p (ie. DC 6= DV ), then the chemical
potential, EF , must be adjusted up or down from the
center of the gap so that n = p.

Furthermore, the carriers which are induced across the
gap are relatively (to kBT ) high in energy since typically
Eg = EC − EV À kBT .

Eg(eV ) ni(cm
−3)(300◦K)

Ge 0.67 2.4× 1013

Si 1.1 1.5× 1010

GaAs 1.43 5× 107

TABLE III: Intrinsic carrier densities at room temperature

1eV

kB
' 10000◦K À 300◦K (167)

Thus, assuming that E − µ & Eg

2 À kBT

1
e(E−µ)/kBT + 1

' 1
e(E−µ)/kBT

= e−(E−µ)/kBT (168)

ie., Boltzmann statistics. A similar relationship holds for
holes where −(E − µ) & Eg

2 À kBT

1− 1
e(E−µ)/kBT + 1

=
1

e−(E−µ)/kBT + 1
' e(E−µ)/kBT

(169)
since e(E−µ)/kBT is small. Thus, the concentration of
electrons n

n ' (2m∗
n)

3
2

2π2~3
eµ/kBT

∫ ∞

EC

√
E − ECe−E/kBT dE

=
(2m∗

n)
3
2

2π2~3
(kBT )

3
2 e−(EC−µ)/kBT

∫ ∞

0

x
1
2 e−xdx

︸ ︷︷ ︸√
π/2

= 2
(

2πm∗
nkBT

h2

) 3
2

e−(EC−µ)/kBT

= NC
effe−(EC−µ)/kBT (170)

Similarly

p = 2
(

2πm∗
pkBT

h2

) 3
2

e(EV −µ)/kBT = NV
effe(EV −µ)/kBT

(171)
where NC

eff and NV
eff are the partition functions for a

classical gas in 3-d and can be regarded as ”effective
densities of states” which are temperature-dependent.
Within this interpretation, we can regard the holes and
electrons statistics as classical. This holds so long as n
and p are small, so that the Pauli principle may be ig-
nored - the so called nondegenerate limit.

In general, in the nondegenerate limit,

np = 4
(

kBT

2π~2

)3 (
m∗

nm∗
p

) 3
2 e−Eg/kBT (172)

this, the law of mass action, holds for both doped and in-
trinsic semiconductor so long as we remain in the nonde-
generate limit. However, for an intrinsic semiconductor,
where n = p, it gives us further information.

ni = pi = 2
(

kBT

2π~2

) 3
2 (

m∗
nm∗

p

) 3
4 e−Eg/2kBT (173)

(See table (II)). However, we already have relationships
for n and p involving EC and EV

n = p = NC
effe−(EC−µ)/kBT = NV

effe(EV −µ)/kBT (174)

e2µ/kBT =
NV

eff

NC
eff

e(EV +EC)/kBT (175)
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or

µ =
1
2
(EV + EC) +

1
2
kBT ln

(
NV

eff

NC
eff

)
(176)

µ =
1
2
(EV + EC) +

3
4
kBT ln

(
m∗

p

m∗
n

)
(177)

Thus if m∗
p 6= m∗

n, the chemical potential µ in a semicon-
ductor is temperature dependent.

Doped Semiconductors

Since, σ ∼ nτ , so the conductivity depends linearly
upon the doping (it may also effect µ in some materials,
leading to a non-linear doping dependence). A typical
metal has

nmetal ' 1023/(cm)3 (178)

whereas we have seen that a typical semiconductor has

ni ' 1010

cm3
at T ' 300◦K (179)

Thus the conductivity of an intrinsic semiconductor is
quite small!

To increase n (or p) to ∼ 1018 or more, dopants are
used. For example, in Si the elements used as dopants
are typically in the third or fifth column. Thus P or B

Si

P

B

Si Si

Si

Si

Si Si Si

Si

Si

Si Si

Si

Si

SiSi

Si

Si

Si

Si

Si Si Si Si Si

Si

Si

SiSi

Si

r

e+

e -

Si 3s  3p
2 2

B 3s  3p
2 1

P 3s  3p
2 3

r = 
2

h  ε
2*m  e

big!

FIG. 28: The dopant, P, (left) donates an electron and the
acceptor, B, donates a hole (or equivalently absorbs an elec-
tron).

will either donate or absorb an additional electron (with
the latter called the creation of a hole).

In terms of energy levels

E
F

E
V
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E
V

E
C

E
F

E
D

E
A

n - SeC p - SeC

occupied at T= 0

unoccupied at T= 0
(occupied by holes at T = 0)

FIG. 29: Left, the density of states of a n-doped semiconduc-
tor with the Fermi level close to the conduction band and,
right, the equivalent for a p-doped semiconductor.

Carrier Densities in Doped semiconductor

The law of mass action is valid so long as the use
of Boltzmann statistics is valid i.e., if the degeneracy is
small. Thus, even for doped semiconductor

E
V

E
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E
D

E
F

E
A

D
N   = N   + N  D D

0+

N   = N   + N  
A A A

0+

# un-ionized

# ionized

FIG. 30: Ionization of the dopants

np = NC
effNV

effe−βEg = n2
i = p2

i , (180)

where β = 1/kBT . Using (177) we can define

µi =
1
2
(EV + EC) +

3
4
kBT ln

(
m∗

p

m∗
n

)
, (181)

hence,

n = nie
(−µi−µ)/kBT and p = nie

(µi−µ)/kBT (182)

To a good approximation we can assume that all
donors and all acceptors are ionized. Therefore,

n− p = ND −NA and np = n2
i

⇒ n = ND −NA +
n2

i

n

=
ND −NA

2
+

√
(ND −NA)2 + 4n2

i

2
⇒ n ' ND and p ' n2

i /ND for ND À NA

p ' NA and n ' n2
i /NA for NA À ND (183)

By convention, if n > p we have an n-type semicon-
ductor, n+-Si, or n-doped Si. The same is true for p.
Quite generally, at large doping the semiconductor will
behave like a metal, since the dopant will spill over into
the conduction band (or valence band for holes). In this
case there is no gap anymore for the carriers and the con-
ductivity remains constant to the lowest possible temper-
atures. The main difference to a metal is only that the
density of carriers is still very much lower (several orders
of magnitude) than in a metal. At low doping the num-
ber of carriers in the conduction band (or valence band)
vanishes at zero temperature and the semiconductor be-
haves like an insulator.

An effective way to describe a semiconductor at high
temperature or high doping is to consider that n = Neff

D

and p = Neff
A , where n and p are mobile negative and

positive carriers, whereas Neff
D and Neff

A are effective
positive and negative fixed charges, respectively. In this
approximation, charge neutrality is automatically veri-
fied and we can use it to discuss heterogenous systems,
where Neff

D depends on position (but is fixed).
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Metal-Insulator transition

In n-type semiconductors, when EF < EC , carriers ex-
perience a gap ∆ = EC−EF . Hence at low temperatures
the system is insulating. Indeed,

n = NC︸︷︷︸
∼T 3/2

e
µ−EC
kBT (184)

Since from Drude

σ =
ne2τ

m∗ → 0 when T → 0. (185)

When EF > EC , the semiconductor behaves like a
metal. In this case we obtain again from Drude that
σ = ne2τ

m∗ > 0 even for T → 0, since the density does
no vanish. In general, τ also depends on temperature.
Indeed, in the metallic phase the most important tem-
perature dependence comes from τ . To evaluate the con-
tributions from different scattering mechanism we can
consider 1/τ as the scattering probability. This follows
directly from Boltzmann’s equation, where

dg

dt

)

coll

=
∑

k′
(Γ(k′k)− Γ(kk′)), (186)

where

Γ(kk′) = W (kk′)︸ ︷︷ ︸
prob. k→k′

· g(k)︸︷︷︸
# of states in k

· (1− g(k′))︸ ︷︷ ︸
# of empty states in k′

(187)
is the transition rate from state k to k′. Local equilibrium
implies Γkk′ = Γk′k, hence g = fFD.

The most important scattering cases are the following:

• Impurity scattering (for a density of impurities nI):

1
τe−imp

∼ nI (188)

• Electron-electron scattering:

1
τe−e

∼ (T/TF )2 (189)

• Electron-phonon scattering:

1
τe−ph

∼ (T/TD)5 (190)

In general, the total scattering probability is the sum
of all possible scattering probabilities, hence

1
τtot

=
1

τe−imp
+

1
τe−e

+
1

τe−ph

⇒ ρ =
m∗

e2nτ
' ρ0 + A

(
T

TF

)2

+ B

(
T

TD

)5

(191)

where the constants (ρ0, A and B) depend on the mate-
rial. In most metals and heavily doped semiconductors
the temperature dependence of the resistivity is domi-
nated by these three mechanisms, which means that the
importance of impurities, electron-phonon and phonon-
phonon interactions can be extracted from the tempera-
ture dependence of the resistivity.

A special case is the magnetic impurity case (Kondo),
which gives rise to an additional term in 1/τK ∼
−(T/TK)2.

In practice

To determine the density (n-p) the Hall resistance can
be used. The ration τ/m∗ can then be obtained from
the Drude conductivity and m∗ can be obtained from
magneto-oscillations due to the Landau levels. This can
in principle be done for all temperatures, hence it is possi-
ble to extract m∗, n(T ), and τ(T ) simply by using trans-
port and to deduce the dominant scattering mechanisms
in the systems under study.

p-n junction

(See also pn junction supplement)

FIG. 31: Formation of a pn junction, with the transfer of
charges from the n region to the p region and the alignment
of the chemical potential so that ~∇µ(~r) = 0. The depletion
and accumulation regions are delimited by xn and −xp, re-
spectively.

When two differently doped semiconductors are
brought together they form a pn junction. In general,
electrons form the more n-type doped region will trans-
fer to the less doped or p-type region. This leaves a
positively charged region on the n side and and accumu-
lation of negative charges on the p side. The potential
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distribution can then be obtained by solving Poisson’s
equation

∂2V (x)
∂x2

= − e

ε0
ρ(x) (192)

where ρ(x) = −n(x)+p(x)+ND(x)−NA(x) is the charge
distribution of the mobile carriers (electrons and holes)
plus the fixed charges (donors and acceptors) and ε0 is
the dielectric constant.

p type n type
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+
+
+
+
+

po
te

nt
ia

l

charge density
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in depletion region

no holes
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FIG. 32: Sketch of the charge density, the electric field and
the internal potential distribution due the transfer of charges
in a pn junction

The most important consequence of a pn-junction is
the diode behavior. Indeed, when applying a negative
bias on the n region, the conduction bands tend to align
more and current can flow (forward bias). If the bias is
positive the internal potential is increased and almost no
current can flow (reverse bias). This leads to the well
known asymmetry in the current-voltage characteristics
of a diode. This is one of the most important elements of
electronics. These ideas can be extended to three termi-
nal devices such as a pnp junction of npn junction (which
is equivalent to two pn junction put together). In this
case we have a transistor, i.e., by varying the potential
on the center element we can control the current through
the device.

ONE DIMENSIONAL CONDUCTANCE

Suppose that we have a perfect one-dimensional con-
ductor (quantum wire) connected by two large electron
reservoirs. In real life they would be electrical contacts.
The left reservoir is fixed at chemical potential µL and
the right one at µR. The current is then given as usual
by

I = −env = −e

∫ kR
F

kL
F

2 · dk

2π

v︷︸︸︷
~k
m∗

= −e
~(kL

F )2 − (kR
F )2

2πm∗

= −2e

h
( µR︸︷︷︸
−eVR

− µL︸︷︷︸
−eVL

)

=
2e2

h
(VR − VL) (193)

FIG. 33: Schematic cross-sectional view of a quantum point
contact, defined in a high-mobility 2D electron gas at the in-
terface of a GaAs-AlGaAs heterojunction. The point contact
is formed when a negative voltage is applied to the gate elec-
trodes on top of the AlGaAs layer. Transport measurements
are made by employing contacts to the 2D electron gas at ei-
ther side of the constriction. (Beenakker, PHYSICS TODAY,
July 1996).

Hence I = (2e2/h)∆V ⇒ R = h/2e2 and G = 2e2/h,
where R and G are the resistances and conductances,
respectively. This result can seem surprising at first since
it implies that the resistance does not depend on the
length of the system. A very short quantum wire has the
same resistance as an infinitely long wire. This result
however, only applies for a perfect conductor. As soon
as impurities lie in the wire this result has to be modified
to take into account scattering by the impurities and then
R would typically depend on the length of the system.

MORE THAN ONE CHANNEL, THE QUANTUM
POINT CONTACT

The previous result is specific to the purely one-
dimensional case. In general the system can be extended
to a system of finite width, W . In this case the electron
energy is given by

ε =
~2k2

x

2m∗ +
~2(πn/W )2

2m∗ (194)

if the boundary of our narrow wire is assumed to be
sharp, since in this case the wave function has to vanish
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FIG. 34: Conductance quantization of a quantum point con-
tact in units of 2e2/h. As the gate voltage defining the con-
striction is made less negative, the width of the point contact
increases continuously, but the number of propagating modes
at the Fermi level increases stepwise. The resulting conduc-
tance steps are smeared out when the thermal energy becomes
comparable to the energy separation of the modes.

at the boundary (like for an electron in a box of width
W ). In general, if

~2(π/W )2

2m∗ < EF <
~2(2π/W )2

2m∗ (195)

then we recover the ideal case of a one-dimensional quan-
tum wire, or single channel. If, however,

~2(Nπ/W )2

2m∗ < EF <
~2((N + 1)π/W )2

2m∗ (196)

we can have n channels, where each channel contributes
equally to the total conductance. Hence in this case G =
N · 2e2/h, where N is the number of channels. This
implies that a system, where we reduce the width of the
conductor will exhibit jumps in the conductance of step
2e2/n. Indeed, this is what is seen experimentally.

QUANTUM HALL EFFECT

The quantum hall effect is a beautiful example, where
the concept of a quantized conductance can be applied
to (see additional notes on the quantum Hall effect).

SUPERCONDUCTIVITY

The main aspects of superconductivity are

• Zero resistance (Kammerlingh-Onnes, 1911) at T <
Tc: The temperature Tc is called the critical tem-
perature.

FIG. 35: Imaging of the channels using an AFM (1 to 3 chan-
nels from left to right). The images were obtained by applying
a small negative potential on the AFM tip and then measur-
ing the conductance as a function of the tip scan and then
reconstruct the 2D image from the observed change in con-
ductance. (From R.M. Westervelt).
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FIG. 36: Magnetic field dependence in a superconductor.
(Vortex picture from AT&T ’95)

• Superconductivity can be destroyed by an exter-
nal magnetic field Hc which is also called the criti-
cal field (Kammerlingh-Onnes, 1914). Empirically,
Hc(T ) = Hc(0)(1− (T/Tc)2)

• The Meissner-Ochsenfeld effect (1933). The mag-
netic field does not penetrate the sample, the mag-
netic induction is zero, B = 0. This effect distin-
guishes two types of superconductors, type I and
type II. In Type I, no field penetrates the sample,
whereas in type II the field penetrates in the form
of vortices.

• Superconductors have a gap in the excitation spec-
trum.
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Vanadium

FIG. 37: The critical magnetic field, resistance and specific
heat as a function of temperature. (Ref: superconductors.org)

The main mechanism behind superconductivity is the
existence of an effective attractive force between elec-
trons, which favors the pairing of two electrons of oppo-
site momentum and spin. In conventional superconduc-
tors this effective attractive force is due to the interaction
with phonons. This pair of electrons has now effectively
zero total momentum and zero spin. In this sense this
pair behaves like a boson and will Bose-Einsteein conden-
sate in a coherent quantum state with the lowest possible
energy. This ground sate is separated by a superconduct-
ing gap. Electrons have to jump over this gap in order to
be excited. Hence when the thermal energy exceeds the
gap energy the superconductor becomes normal.

The origin of the effective attraction between electrons
can be understood in the following way:

v  ∼ 10  cm/s
F
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+ +
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FIG. 38: Origin of the retarded attractive potential. Elec-
trons at the Fermi surface travel with a high velocity vF . As
they pass through the lattice (left), the positive ions respond
slowly. By the time they have reached their maximum excur-
sion, the first electron is far away, leaving behind a region of
positive charge which attracts a second electron.

When an electron flies through the lattice, the lat-
tice deforms slowly with respect to the time scale of
the electron. It reaches its maximum deformation at
a time τ ' 2π

ωD
' 10−13s after the electron has passed.

In this time the first electron has travelled ' vF τ '
108 cm

s · 10−13s ' 1000Å. The positive charge of the lat-
tice deformation can then attract another electron with-
out feeling the Coulomb repulsion of the first electron.

Due to retardation, the electron-electron Coulomb repul-
sion may be neglected!

The net effect of the phonons is then to create an
attractive interaction which tends to pair time-reversed
quasiparticle states. They form an antisymmetric spin

e

e

ξ ∼ 1000Α°

k↑

- k↓

FIG. 39: To take full advantage of the attractive potential
illustrated in Fig. 38, the spatial part of the electronic pair
wave function is symmetric and hence nodeless. To obey the
Pauli principle, the spin part must then be antisymmetric or
a singlet.

singlet so that the spatial part of the wave function can
be symmetric and nodeless and so take advantage of the
attractive interaction. Furthermore they tend to pair in
a zero center of mass (cm) state so that the two electrons
can chase each other around the lattice.

Using perturbation theory it is in fact possible to show
that to second order (electron-phonon-electron) the effect
of the phonons effectively leads to a potential of the form

Ve−ph ∼ (~ωq)2

(ε(k)− ε(k − q))2 − (~ω(q))2
(197)

This term can be negative, hence effectively produce and
attraction between two electrons exceeding the Coulomb
repulsion. This effect is the strongest for k = kF and q =
2kF since ε(kF ) = ε(−kF ) and ω(2kF ) ' ωD (the Debye
frequency). Hence electrons will want to form opposite
momentum pairs (kF ,−kF ). This will be our starting
point for the microscopic theory of superconductivity à
la BCS (Bardeen, Shockley and Schrieffer).

BCS theory

To describe our pair of electrons (the Cooper pair) we
will use the formalism of second quantization, which is
a convenient way to describe a system of more than one
particle.

H1particle =
p2

2m
⇒ H1pψ(x) = Eψ(x) (198)

Let’s define

c+
1 (x) |0〉︸︷︷︸

vacuum

= ψ(x) and 〈0|c1(x) = ψ∗(x) (199)

With these definitions, |0〉 is the vacuum (or ground
state), i.e., state without electrons. c+

1 (x)|0〉 corresponds
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to one electron in state ψ(x) which we call 1. c+ is also
called the creation operator, since it creates one elec-
tron from vacuum. c is then the anhilation operator, i.e.,
c1c

+
1 |0〉 = |0〉, which corresponds to creating one electron

from vacuum then anhilating it again. Other properties
include

c1|0〉 = 0 and c+
1 c+

1 |0〉 = 0 (200)

The first relation means that we cannot anhilate an
electron from vacuum and the second relation is a con-
sequence of the Pauli principle. We cannot have two
electrons in the same state 1.

Hence,

c+
1 c+

1 = 0 ⇒ (c+
1 c+

1 )+ = 0 ⇒ c1c1 = 0
⇒ (c+

1 c1)c+
1 |0〉 = c+

1 |0〉 (201)

This shows that c+
1 c1 acts like a number operator. It

counts the number of electrons in state 1. (Either 1 or
0).

We can now extend this algebra for two electrons in
different states c+

1 |0〉 corresponds to particle 1 in state 1
and c+

2 |0〉 to particle 2 in state 2. The rule here is that
c+
i cj + cjc

+
i = δi,j .

Finally we can write down the two particle hamiltonian
as

H2p = t1c
+
1 c1 + t2c

+
2 c2 − gc+

1 c1c
+
2 c2 (202)

where ti is the kinetic energy of particle i and g is
the attraction between particle 1 and 2. We will also
suppose that t1 = t2 for the Cooper pair. The job now
is to find the ground state of this Hamiltonian. Without
interactions (g = 0) we would simply have E = t1 +
t2. The interaction term is what complicates the system
since it leads to a quadratic term in the Hamiltonian.
The idea is to simplify it by getting rid of the quadratic
term. This is done in the following way. From eq. (202)
we have

H = t(c+
1 c1 + c+

2 c2)− gc+
1 c1c

+
2 c2

= t(c+
1 c1 + c+

2 c2) + gc+
1 c+

2 c1c2

= t(c+
1 c1 + c+

2 c2)− ga(c1c2 − c+
1 c+

2 ) + ga2

+ g(c+
1 c+

2 + a)(c1c2 − a)︸ ︷︷ ︸
'0 (Mean field approx.)

(203)

⇒ HMF = t(c+
1 c1 + c+

2 c2)− ga(c1c2 − c+
1 c+

2 ) + ga2

We used the mean field approximation, which re-
places c1c2 by its expectation value 〈a|c1c2|a〉 = a ⇒
〈a|c+

1 c+
2 |a〉 = −a, where |a〉 is the ground state of the

Hamiltonian. The idea now is to diagonalize HMF , i.e.
a Hamiltonian in the form H =

∑
i c+

i ci. The trick here
is to use the Boguliubov transformation:

{
c1 = A1 cos(θ) + A+

2 sin(θ)
c+
2 = −A1 sin(θ) + A+

2 cos(θ)

⇒
{

A1 = c1 cos(θ)− c+
2 sin(θ)

A+
2 = c1 sin(θ) + c+

2 cos(θ)
(204)

It is quite straightforward to see that A+
i Aj+AjA

+
i = δij ,

AiAj + AjAi = 0, and A+
i A+

j + A+
j A+

i = 0 using the
properties of ci. We can now rewrite HMF in terms of
our new operators Ai:

HMF = t(c+
1 c1 + c+

2 c2)− ga(c1c2 − c+
1 c+

2 ) + ga2

= t(A+
1 cos(θ) + A2 sin(θ))(cos(θ)A1 + sin(θ)A+

2 ) + · · ·
= (A+

1 A1 + A+
2 A2)(t cos(2θ)− ga sin(2θ))

+ t(1− cos(2θ)) + ga sin(2θ) + ga2

+ (A+
1 A+

2 −A1A2) (t sin(2θ) + ga cos(2θ))︸ ︷︷ ︸
=0 to diagonalize HMF

(205)

Hence the diagonalization condition for HMF fixes the
angle θ of our Boguliubov transformation:

tan(2θ) = −ga

t
⇒ sin(2θ) =

−ga√
t2 + (ga)2

(206)

Hence HMF now becomes

HMF = (A+
1 A1+A+

2 A2)
√

t2 + (ga)2+(t−
√

t2 + (ga)2)+ga2

(207)
It is now immediate to obtain the solutions of the

Hamiltonian, since we have the ground state |a〉 and we
have a diagonal Hamiltonian in terms of Ai hence the
Ground state energy E0 is simply given by HMF |a〉 =
E0|a〉 and Ai|a〉 = 0. The first degenerate excited states
are A+

i |a〉 with energy E1, where HMF A+
i |a〉 = E1A

+
i |a〉

and the next energy level and state is A+
1 A+

2 |a〉, with
energy E2 given by HMF A+

1 A+
2 |a〉 = E2A

+
1 A+

2 |a〉, hence

E2 = t +
√

t2 + (ga)2 + ga2

E1 = t + ga2

E0 = t−
√

t2 + (ga)2 + ga2 (208)

If we take t → 0 and define ∆ = ga we have




E2 = ∆ + ga2

E1 = ga2

E0 = −∆ + ga2

(209)

We can now turn to what a is since,

a = 〈a|c1c2|a〉
= − cos(θ) sin(θ)〈a|A1A

+
1 |a〉

= − cos(θ) sin(θ) 〈a|a〉︸ ︷︷ ︸
=1

⇒ a = − sin(2θ)/2 (210)
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Combining (206) and (210) we obtain

2a =
ga√

t2 + (ga)2
(211)

which is the famous BCS gap (∆) equation. Indeed, it
has two solutions,

a = 0 ⇒ 〈a|c1c2|a〉 = 0 ⇒ Normal
a 6= 0 ⇒ t2 + (ga)2 = g2/4︸ ︷︷ ︸

∆=ga=
√

g2/4−t2

⇒ Superconductor(212)

'=ga

t

Superconductor

Normal

g/2

FIG. 40: The gap of a BCS superconductor as function of the
kinetic energy.

This gives us the condition for superconductivity g ≥
2t. Hence the attraction between our two electrons has
to be strong enough in order to form the superconducting
gap ∆. Typically, t is directly related to the temperature,
hence there is a superconducting transition as a function
of temperature.

We now want to find the expression for our supercon-
ducting wavefunction |a〉. The most general possible form
is

|a〉 = α|0〉+ β1c
+
1 |0〉+ β2c

+
2 |0〉+ γc+

1 c+
2 |0〉 (213)

In addition the condition Ai|a〉 = 0 has to be verified,
which leads after some algebra to

|a〉 = α(1 + tan(θ)c+
1 c+

2 )|a〉 (214)

This state clearly describes an electron pair, the
Cooper pair and represents the superconducting ground
state of the Hamiltonian. In our derivation we only con-
sidered two electrons, but this framework can be gener-
alized to N electrons, where the generalized BCS Hamil-
tonian can be written as

HBCS =
∑

k,σ

tkc+
k, σ︸︷︷︸

spin

ck,σ −
∑

q

Vqc
+
k+q,↑c

+
−k+q,↓ck,↑c−k,↓

(215)
Here Vq is positive and represents the effective phonon
induced attraction between electrons at the Fermi level.
It’s maximum for q = 0. The second term describes the
process of one electron with momentum k and another
electron with momentum −k which are anhilated in or-
der to create one electron with momentum k + q and

another one with momentum −k − q, hence momentum
is conserved in this scattering process and a phonon with
momentum q is exchanged.

How can we relate BCS theory to the observed Meiss-
ner effect? By including the vector potential ~A into the
BCS Hamiltonian it is possible to show that the current
density is then given by

~j =
ne2

mc
~A (216)

The magnetic induction is ~B = ~∇× ~A as usual. This is
in fact London’s equation for superconductivity. We can
now take the rotational on both sides of (216), hence

~∇× ~j︸︷︷︸
~∇× ~B= 4π

c
~j

=
ne2

mc
~∇× ~A

⇒ ~∇× ~∇× ~B = −4πne2

mc2
~B

⇒ Bx ∼ e−x/λL (217)

with λL =
√

mc2

4πne2 which is the London penetration
length.

B

x

Inside the 
superconductor

Vacuum
e -x/�

L

FIG. 41: The decay of the magnetic field inside the supercon-
ductor. The decay is characterized by the London penetration
length λL.

If we had a perfect conductor, this would imply that
the current would simply keep on increasing with an ex-
ternal field ~E, hence

∂~j

∂t
=

ne2

mc
~E

⇒ ∂

∂t
~∇×~j =

ne2

mc
~∇× ~E

⇒ ∂

∂t
~∇× ~∇× ~B =

∂

∂t

4πne2

mc2
~B (218)

This equation is automatically verified from (217).
Hence, (217) implies both the Meissner effect and zero
resistance, which are the main ingredients of supercon-
ductivity. (Reminder: Maxwell gives ~∇ × ~B = 4π

c
~j and

~∇× ~E = − 1
c

∂ ~B
∂t ).
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A remarkable aspect of superconductivity is that one
of the most fundamental symmetries is broken. Indeed,
Gauge invariance is broken because ~j ∼ ~A. What hap-
pens is that below Tc we have a symmetry breaking,
which leads to new particles, the Cooper pairs. Math-
ematically, we have

U(2)︸ ︷︷ ︸
Normal state

= SU(2)︸ ︷︷ ︸
SC state

⊗ U(1)︸︷︷ ︸
Gauge invariance

, (219)

where U(1) ⇔ c → ceiα (Gauge invariance), U(2) ⇔ c →
Ac (A = eiφ/2a) and a+a = 1, SU(2) ⇔ φ = 0.


