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Introduction

How do we get a bounce?

Coming out of the contracting phase the Hubble rate H is
negative.

H > 0 in the expanding phase

So in the transition or ‘bounce’ phase, H = 0 and

Ḣ =
k

a2
− 1

2
(ρ+ P)

If the spatial curvature k is 0, then for Ḣ > 0 and H = 0, we
must have ρ+ P < 0 (NEC violation)

If we have positive spatial curvature, we can have a bounce,
In the closed radiation FRW universe, exact solutions show
this but need a NEC violating field to have the bounce occur
at non-zero volume.

J.D.Barrow and Christos G.Tsagas, CQG Vol. 26, No. 19 (2009)

3 / 40



Isotropising anisotropic cyclic cosmologies

Introduction

Do the most general cyclic universes isotropise?

Closed FRW universe with ordinary matter or dust shows
oscillatory behaviour

Simple solutions in these scenarios have been found

Bouncing models need to solve flatness, isotropy and homo-
geneity problems

J.D.Barrow, M.P.Dabrowski, MNRAS, 275, 850 − 862, 1995, J.D.Barrow and C.G.Tsagas, CQG,26,19,2009,
P.W.Graham et al., JHEP 1402, 029, 2014
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Introduction

We focus on the isotropy problem and split it up into 2 regimes of
interest.

In the contracting branch, on approach to the singularity, or in
the case of non-singular cosmologies, on approach to the
bounce

Over a large period of oscillations with increasing expansion
maxima
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In the contracting phase

A simple example of ekpyrosis

The metric

ds2 = dt2 − a2(t)dx2 − b2(t)dy2 − c2(t)dz2

Friedmann equation: 3H2 = σ2 + ρmatter ,

The shear evolves as,

σ̇αβ + 3Hσαβ = 0

ρmatter should evolve as V−n, n� 2

J. Khoury, B.A. Ovrut, P. J. Steinhardt and N.Turok, 2001, J. High Energy Phys. 11(2001)041
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In the contracting phase

Bianchi Class A cosmologies

The generalised metric

ds2 = dt2 − habdω
adωb

Having an isotropic ultra stiff field of density ρ with equation
of state p = (γ − 1)ρ, such that γ > 2

8 / 40
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In the contracting phase

The phase plane system

We introduce

σ+ ≡ 1
2 (σ22 + σ33),

σ− ≡ 1
2
√

3
(σ22 − σ33).

Write EFE in terms of expansion normalised variables

Ω ≡ ρ

3H2
, Σ2 ≡ σ2

3H2
, K ≡ −

(3)R

6H2
.
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In the contracting phase

The phase plane system looks like...

Einstein equations of the form x′ = f(x)

subject to the Friedmann constraint g(x) = 0

where the state vector x ∈ R6 is given by
{H, Σ+,Σ−︸ ︷︷ ︸

shear components

, N1,N2,N3︸ ︷︷ ︸
spatial curvature variables

,Ω}
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In the contracting phase

The fact that the matter is ultra stiff γ > 2 is used and

A no-hair theorem can be proved for all Bianchi types, I-VIII
as well as IX(separately)

Cosmic no-hair theorem

All initially contracting, spatially homogeneous, orthogonal Bianchi
Type I-VIII cosmologies and all Bianchi type IX universes sourced
by an ultra-stiff fluid with an equation of state such that (γ − 2) is
positive definite, collapse into an isotropic singularity, where the
sink is a spatially flat and isotropic FRW universe.

J.E.Lidsey, CQG, 23, 3517,(2005)
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Ekpyrosis meets anisotropic pressures!

Why include anisotropic stress?

Bouncing models of the universe, such as ekpyrotic scenarios
or LQC models claim isotropisation occurs at early times. But
this isn’t true on addition of anisotropic stress.

Interaction rates of particles

Γ = σnv ∼ gα2T

To remain in equilibrium, Γ > H

Before isotropisation, anisotropic universe expands faster

Harder to maintain equilibrium

Decoupled collisionless particles free stream and exert
anisotropic stresses.

13 / 40
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Ekpyrosis meets anisotropic pressures!

Anisotropic stresses in a Bianchi I universe

We go back to our simple flat anisotropic universe and add
anisotropic pressures in.

Friedmann equation

3H2 = σ2 + ρmatter ,

The shear evolves as,

σ̇αβ + 3Hσαβ = µPαβ
anisotropic stress

The equation for the shear isn’t homogeneous and we can’t say
straight away that an ultra stiff field will be able to dominate over
it.

14 / 40
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Ekpyrosis meets anisotropic pressures!

Anisotropic stresses in Bianchi Class A

Resort to the expansion normalised variables and introduce
Z ≡ µ

3H2 where µ is the anisotropic pressure field energy
density with EOS, pi = (γi − 1)µ and
γ? = (γ1 + γ2 + γ3)/3 > γ

try to perform stability analysis on the state vector
x = {H,Σ+,Σ−,N1,N2,N3,Ω,Z}

Linearise expansion normalised EFE around the FL point

Σ+ = 0, Σ− = 0, N1 = 0, N2 = 0, N3 = 0, Ω = 1, Z = 0

15 / 40
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Ekpyrosis meets anisotropic pressures!

Stability analysis with anisotropic pressures:the results

We find the following eigenvalues
3
2 (2− γ) of multiplicity 2

3γ−2
2 of multiplicity 3

3(γ − γ?) of multiplicity 1

Using the condition γ? > γ > 2, FL equilibrium point stability
cannot be determined

We can no longer determine the stability of the FL point and
can’t prove a no hair theorem like before.
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The Bianchi IX universe

Bianchi Type IX: What it is and why we use it

It is the most general closed homogeneous universe,
describable by ODEs

It has the closed FRW universe as its isotropic sub-case

It has expansion anisotropy and anisotropic 3-curvature(which
has no Newtonian analogue)

The 3-curvature can change sign through the course of its
evolution and is positive when the model is closest to isotropy.

On approach to t → 0, in an open interval 0 < t < T ,
exhibits chaotic Mixmaster oscillations, however oscillations
become finite in number even if t → tPl on the finite interval
tPl < t < T excluding t → 0.
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The Bianchi IX universe

We have a Bianchi Type IX universe with

an isotropic pressure field with energy density ρ which follows
the equations of state p = (γ − 1)ρ and is effectively NEC
violating, to bring about a non-singular bounce

Anisotropic pressure field with energy density µ and
pi = (γi − 1)µ with i = 1, 2, 3, such that
γ? = (γ1 + γ2 + γ3)/3 and γ? > γ

Choose initial conditions satisfying the Friedmann constraint

19 / 40
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The Bianchi IX universe

Scale factor evolution

Figure: Scale factors with isotropic ghost field and with fields with
anisotropic pressures respectively

The scale factors with just an isotropic pressure ghost field
bounce and start to expand.
The scale factors with the anisotropic pressure field included
seem to contract towards a singularity. 20 / 40
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The Bianchi IX universe

Evolution of the shear
If we look at the evolution of the shear, we find,

Figure: Evolution of σ2 with time
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Solving the flatness problem within the framework of bouncing cosmologies

Bouncing cosmologies and the flatness problem

Simple models of bouncing universes such as matter+
radiation closed FRW incorporated increasing radiation
entropy to increase expansion maxima from cycle to cycle

Universe seemed to approach flatness

Suitable candidate for the current day universe?

Question

Would an anisotropic, bouncing cosmological model under similar
increasing radiation entropy from cycle to cycle undergo
isotropisation simultaneously with approach to flatness?

23 / 40
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Solving the flatness problem within the framework of bouncing cosmologies

Present day flatness can perhaps be achieved by diluting the
curvature with increasing volume

Figure: Scale factor with increasing entropy of radiation in closed FRW

J.D.Barrow, M.P.Dabrowski, MNRAS, 275, 850 − 862, 1995
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Solving the flatness problem within the framework of bouncing cosmologies

The scale factors with increasing radiation entropy

Increasing entropy of radiation in Bianchi IX

Figure: Evolution of volume scale factor and individual scale factors
respectively
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Solving the flatness problem within the framework of bouncing cosmologies

Let’s see how the shear and the 3-curvature behave

Figure: Evolution of σ2 and (3)R respectively
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Adding a cosmological constant to the cocktail

Cosmological constant in an oscillating FRW model
When the cosmological constant starts to dominate, the isotropic
model stops oscillating and instead of recollapsing enters a de
Sitter exponential expansion

Figure: Adding a cosmological constant to the oscillating, closed FRW
model

J.D.Barrow, M.P.Dabrowski, MNRAS, 275, 850 − 862, 1995 28 / 40
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Adding a cosmological constant to the cocktail

The scale factors with increasing radiation entropy
The volume scale factor and hence the individual scale factors
evolve through a series of oscillations with increasing maxima until
the cosmological constant starts to dominate and they expand
exponentially

Figure: Evolution of volume scale factor and individual Hubble rates from
left to right
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Adding a cosmological constant to the cocktail

Let’s see how the shear and the 3-curvature behave

Figure: Evolution of σ2 and (3)R respectively
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Conclusions

Summary I

In the initially contracting Bianchi Class A models, in the
presence of ultra-stiff anisotropic stresses, FL is no longer an
attractor in the asymptotic past

In the Bianchi IX equations, including an ultra stiff anisotropic
pressure field causes the scale factors to contract towards a
collapse near the singularity.
They bounce with only an isotropic ghost field present.

The shear remains small and nearly constant in the isotropic
case but increases without bound when the anisotropic
pressure field is included.

32 / 40



Isotropising anisotropic cyclic cosmologies

Conclusions

Summary II

By future evolving the model, we find that with radiation
entropy increase, the height of the scale factor maxima
increases, but the shear and the curvature oscillate and do not
decrease to indicate isotropisation at any time.

On adding the cosmological constant to the analysis, at the
point of cosmological constant domination, the scale factors
stop oscillating and undergo exponential expansion.

The shear and the curvature tensors oscillate as before and
then under cosmological constant domination, they fall to
smaller and smaller values
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Conclusions

So the takeaway message...

Near the singularity...

Including anisotropic stress, does not always result in isotropisation
near the singularity, even if the anisotropic stress field is ultra-stiff
on average

On future-evolving the system..

On evolving the system into the future, isotropisation does not
occur as the shear keeps oscillating with the oscillations of the
volume scale factors. On adding a cosmological constant, the shear
and curvature fall to very small values
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Conclusions

The effect of non comoving velocities with entropy increase

Figure: Evolution of the square of one of the spatial velocity components
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Conclusions

The effect of non comoving velocities after cosmological
constant domination

Figure: Evolution of the square of one of the spatial velocity components
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Conclusions

The effect of non comoving velocities, in brief

On imposing momentum and angular momentum
conservation, the spatial components of the velocities fall to
smaller values with an increase in entropy density and vice
versa

On addition of cosmological constant, bounces cease,
expansion tends to the quasi dS asymptote and velocities tend
to oscillate with a constant amplitude, while one of them
tends to a constant value.
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Conclusions

Thank you
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Bianchi Cosmologies

Explaining all the symbols

Definition:Bianchi models are spatially homogeneous cosmologies
admitting a three-parameter local group G3 of isometries that act
simply transitively on spacelike hypersurfaces Σt .

ds2 = dt2 − habdω
adωb

where dωa = 1
2C

a
bcω

b ∧ ωc and C a
bc are the structure constants of

the Lie algebra G3 As C a
(bc) = 0, there are 9 independent

components, and
C a
bc = ncdεdab + δc[aAb]

where nab is a symmetric 3× 3 matrix, and Ab = C a
ab is a 3× 1

vector.
Using the Jacobi identity, C e

d [aC
d
bc], we have nabAb = 0. Choose

Ab = (A, 0, 0) and nab =diag[n1, n2, n3], to get,

n1A = 0

If A = 0, Bianchi Class A models, and if A 6= 0(n1 = 0), Bianchi
Class B.
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Bianchi Cosmologies

Orthonormal frame formalism

We define the unit timelike vector field u perpendicular to the
group orbits and the projection tensor hab

ua;b = σab + ωab + 1
3 Θhab − u̇aub

We have specialised to cases where the total stress
tensor(isotropic+anisotropic) is diagonal

We can write EFE as x′ = f(x). The functions f(x) are
homogeneous of degree 2

System is invariant under scale transformation x̃ = λx and
dt̃/dt = λ

so we can introduce dimensionless variables, as well as because
the variables in their current form diverge close to the big
bang and tend to zero at late times in ever-expanding models

Things evolve wrt the scale factor, so it seems natural to
normalise wrt the Hubble rate
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Bianchi Cosmologies

Explicit solutions for axisymmetric universe

A.G. Doroshkevich, V.N.Lukash and I.D.Novikov, 1973, Zh. Eksper. Teor. Fitz, 64, No. 1457 − 1474

3 / 8



Isotropising anisotropic cyclic cosmologies

Bianchi Cosmologies

Explicit solutions for axisymmetric universe

We have ρ and µ for isotropic and anisotropic pressure fields
which follow the equations of state p = (γ − 1)ρ and
pi = (γi − 1)µ with γ? = (γ1 + γ2 + γ3)/3 and γ? > γ

the 3 scale factors in the 3 directions are expressed as,

a(t) ≡ eα(t), b(t) ≡ eβ(t), c(t) ≡ eδ(t)

Define

x ≡ α′(t)− β′(t),

y ≡ α′(t)− δ′(t),

H ≡ 1

3

(
α′(t) + β′(t) + δ′(t)

)
.

Choose initial conditions satisfying the Friedmann constraint
for the variable system

{x , y ,H, α, β, δ, ρ, µ}
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Bianchi Cosmologies

The setup

The setup

The generalised metric

ds2 = −dt2 + habdω
adωb

Having isotropic ultra stiff ghost field of density ρ with
equation of state p = (γ − 1)ρ

and anisotropic pressure ultra stiff field of density µ with
equation of state pi = (γi − 1)µ

with γ? = (γ1 + γ2 + γ3)/3 and γ? > γ
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Bianchi Cosmologies

The setup

The Simple Harmonic Universe

simple model of an oscillating universe

Ingredients: Closed FRW, ”domain wall matter” i.e. matter
which obeys an equation of state p = −(1/3)ρ and a negative
cosmological constant
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Bianchi Cosmologies

The setup

The scale factors with increasing radiation entropy
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Bianchi Cosmologies

The setup

Let’s see how the shear and the 3-curvature behave
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