Pole Inflation in Jordan Frame SUGRA

Daisuke Yoshida (McGill)

Based on arXiv:1709.03440 with

Ken'ichi Saikewa (DESY), Masahide Yamaguchi (Tokyo Institute of Technology), Yasuho Yamashita (Yukawa Institute of Theoretical Physics(YITP))

Sep. 27, 2017, Journal Club at McGill

1. Basics of Pole Inflation

2.J-sugra and FKLMP Inflation Model

3. Pole Inflation in J-sugra Beyond FKLMP model

Daisuke Yoshida

1. Basics of Pole Inflation

2.J-sugra and FKLMP Inflation Model

3. Pole Inflation in J-sugra Beyond FKLMP model

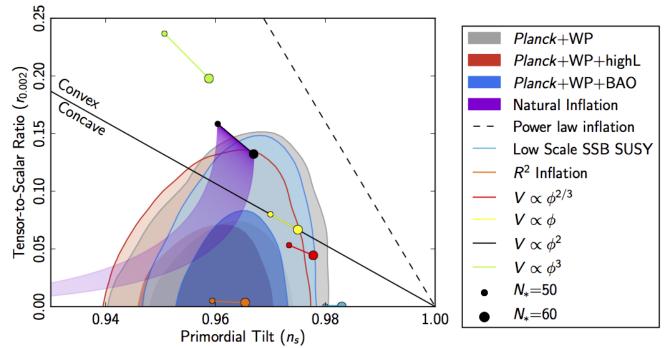
Daisuke Yoshida

Observation about Inflation

Observation of CMB gives us much information about inflation!

- Curvature power spectrum: $P_{\zeta} \sim O(10^{-10})$
- Tensor to scalar ratio: r < 0.15
- Spectral index: $n_S \sim 0.96$





Basics of Slow Roll Inflation 1

□ Simplest inflation model with canonical scalar field:

$$S = \int d^4x \sqrt{-g} \left[\frac{1}{2}R - \frac{1}{2}(\nabla\phi)^2 - V(\phi) \right]$$

□ Inflation occurs when slow roll parameters are sufficiently small;

$$\epsilon = \frac{1}{2} \left(\frac{V'}{V}\right)^2 \ll 1, \ \eta = \frac{V''}{V} \ll 1$$

□ Slow-roll inflation gives predictions in terms of a potential

$$P_{\zeta} = \frac{V}{24\pi^2\epsilon}, \ n_s = 1 + 2\eta - 6\epsilon, \ r = 16\epsilon$$

Daisuke Yoshida

Basics of Slow Roll Inflation 2

□ Predictions strongly depend on potential:

$$P_{\zeta} = \frac{V}{24\pi^2\epsilon}, \ n_s = 1 + 2\eta - 6\epsilon, \ r = 16\epsilon \qquad \epsilon = \frac{1}{2} \left(\frac{V'}{V}\right)^2 \ll 1, \ \eta = \frac{V''}{V} \ll 1$$

 $\hfill\square$ Example: power law potential $~V(\phi)=g\phi^n$, Number of e-folding is given by

$$N(\phi) := \log(a_e/a(\phi)) = \int_{\phi_e}^{\phi} d\phi \frac{V}{V'} \sim \frac{1}{2n} \phi^2$$

• n_s and r can be represented by N as

$$n_s = 1 - \frac{n+2}{2N}, \ r = \frac{4n}{N}$$

• This model is excluded from the observation.

$$r = \frac{8n}{n+2}(1-n_s) \sim \frac{8n}{n+2} \times 0.04 = \begin{cases} 0.16 \text{ for } n=2\\ 0.19 \text{ for } n=3 \end{cases}$$

Daisuke Yoshida

Pole Inflation

pole inflation: inflation driven by the pole in kinetic term

Galante, Kallosh, Linde, Rosest (2015)

$$S = \int d^4x \sqrt{-g} \left[\frac{1}{2}R - \frac{1}{2} \frac{K(\rho)}{(\nabla \rho)^2} - V(\rho) \right]$$

• Kinetic term has a pole:

$$K(\rho) = \frac{a_p}{\rho^p} \left(1 + \mathcal{O}(\rho) \right)$$

• Potential is finite at pole:

$$V(\rho) = V_0(1 - c\rho + \mathcal{O}(\rho^2))$$

Ideas

In terms of canonically normalized field, potential is stretched near pole.

- Flat potential is realized!
- Predictions do not depend on the detail of potential!

Prediction of pole inflation with p = 2

 \Box Let us derive the prediction of pole inflation with p=2

$$S = \int d^4x \sqrt{-g} \left[\frac{1}{2}R - \frac{1}{2}K(\rho)(\nabla\rho)^2 - V(\rho) \right] \qquad K(\rho) = \frac{a_2}{\rho^2} \left(1 + \mathcal{O}(\rho) \right)$$
$$\phi = e^{-\frac{\rho}{\sqrt{a_2}}} \qquad V(\rho) = V_0 (1 - c\rho + \mathcal{O}(\rho^2))$$
$$S = \int d^4x \sqrt{-g} \left[\frac{1}{2}R - \frac{1}{2}(\nabla\phi)^2 - V(e^{-\frac{\phi}{\sqrt{a_2}}}) \right]$$

□ By using the result of slow-roll inflation, we obtain

$$N(\phi) = \int_{\phi_e}^{\phi} d\phi \frac{V}{V'} \sim \frac{a_2}{c} e^{\frac{\phi}{\sqrt{a_2}}} \qquad \epsilon = \frac{1}{2} \left(\frac{V'}{V}\right) = \frac{a_2}{2} \frac{1}{N} \qquad \eta = \frac{V''}{V} = -\frac{1}{N}$$

at $\rho \to 0, \phi \to \infty, N \to \infty$

and

$$P_{\zeta} = \frac{V_0}{24\pi^2} \frac{2N^2}{a_2}, \ n_s = 1 - \frac{1}{N}, \ r = \frac{8a_2}{N^2}$$

Predictions do not depend on the detail of potential and coincide with observation with $a_2 \sim O(1)$. $(n_s \sim 0.96 \rightarrow r \sim a_2 * 0.013)$

Daisuke Yoshida

Pole inflation from Jordan frame

IF fundamental physics prefer to Jorden frame, it would be natural inflaton has the canonical kinetic term there.

This setting naturally leads to non-trivial kinetic term in Einstein frame!

$$\mathcal{L} = \sqrt{-g_J} \left(f(\rho) R^J - \frac{1}{2} g_J^{\mu\nu} \partial_\mu \rho \partial_\nu \rho - V_J(\rho) \right)$$
$$g_J^{\mu\nu} = f g_E^{\mu\nu}$$
$$\mathcal{L} = \sqrt{-g_E} \left(\frac{1}{2} R^E - K(\rho) g_E^{\mu\nu} \partial_\mu \rho \partial_\nu \rho + \cdots \right)$$

So it would be possible to realize pole inflation in this frame work.

□ We investigate this mechanism based on Jorden frame supergravity.

1. Basics of Pole Inflation

2.J-sugra and FKLMP Inflation Model

3. Pole Inflation in J-sugra Beyond FKLMP model

Daisuke Yoshida

Bosonic part of J-SUGRA

Action of bosonic part of Jordan frame super gravity (without gauge fields)

$$\frac{\mathcal{L}}{\sqrt{-g_J}} = -\frac{1}{6} \Phi R_J + \left(\frac{1}{3} \Phi g_{\alpha\bar{\beta}} - \frac{\Phi_{\alpha} \Phi_{\bar{\beta}}}{\Phi}\right) g_J^{\mu\nu} \partial_{\mu} z^{\alpha} \partial_{\nu} \bar{z}^{\bar{\beta}} - \frac{1}{4\Phi} \left(\Phi_{\alpha} \partial_{\mu} z^{\alpha} - \Phi_{\bar{\beta}} \partial_{\mu} \bar{z}^{\bar{\beta}}\right) \left(\Phi_{\gamma} \partial_{\nu} z^{\gamma} - \Phi_{\bar{\delta}} \partial_{\nu} \bar{z}^{\bar{\delta}}\right) g_J^{\mu\nu} - V_J$$

Dynamical variables;

 $z^{\alpha}~$: complex scalar fields $g^{J}_{\mu\nu}$: space time metric in Jordan frame

$$g_{\alpha\bar{\beta}} = \partial_{\alpha}\partial_{\beta}\mathcal{K}$$
$$V_{J} = \frac{1}{9}\Phi^{2}\mathrm{e}^{\mathcal{K}}\left(-3W\bar{W} + g^{\alpha\bar{\beta}}\nabla_{\alpha}W\nabla_{\bar{\beta}}\bar{W}\right)$$

$$\nabla_{\alpha}W = \partial_{\alpha}W + (\partial_{\alpha}\mathcal{K})W$$

- Khaler potential $\mathcal{K}(z^lpha,ar{z}^{ar{eta}})$
- Super potential $W(z^{lpha}, ar{z}^{ar{eta}})$
- Frame function $\Phi(z^lpha,ar{z}^{ar{eta}})$

$$\Phi_{\alpha} = \partial_{\alpha} \Phi$$

Daisuke Yoshida

Einstein Frame SUGRA

□ Einstein frame SUGRA is obtained by conformal transformation of metric

□ Frame function does not appear.

 ${\cal K}(z^lpha,ar z^{areta})\,$, $\,W(z^lpha,ar z^{areta})\,$: arbitrary function of Einstein frame SUGRA

 $\Phi(z^lpha,ar{z}^{ar{eta}})$: Function to characterize Jordan frame

Daisuke Yoshida

FKLMP model

□ Inflation model in Jordan frame super gravity.

FKLMP model

$$\mathcal{K}(z,\bar{z}) = -3\log\left(-\frac{1}{3}\Phi\right)$$
$$\Phi(z,\bar{z}) = -3 + \delta_{\alpha\bar{\beta}}z^{\alpha}\bar{z}^{\bar{\beta}} + J(z) + \bar{J}(\bar{z})$$

Assuming fields configuration satisfies

$$z^{\alpha} = \bar{z}^{\bar{\alpha}} \qquad \Phi_{\alpha}\partial_{\mu}z^{\alpha} - \Phi_{\bar{\beta}}\partial_{\mu}\bar{z}^{\beta} = 0$$
$$\frac{\mathcal{L}}{\sqrt{-g_{J}}} = -\frac{1}{6}\Phi R_{J} - \delta_{\alpha\bar{\beta}}g_{J}^{\mu\nu}\partial_{\mu}z^{\alpha}\partial_{\nu}\bar{z}^{\beta} - V_{J}$$
Scalar fields have canonic

Scalar fields have canonical kinetic terms !

In original paper, author investigate Higgs inflation in the context of NMSSM.
 Here we focus on simpler toy model than realistic Higgs inflation.

FKLMP model with Single Scalar Field

 \blacksquare Let us focus on FKLMP model with single field: $~z^{\alpha}=\phi$

$$\mathcal{K} = -3\log\left(-\frac{1}{3}\Phi\right)$$
$$\Phi(\phi,\bar{\phi}) = -3 + \phi\bar{\phi} + J(\phi) + \bar{J}(\bar{\phi})$$
$$\phi = \bar{\phi} = \frac{\varphi}{\sqrt{2}}$$

D For simplicity we focus on following choice of $J(\phi)$:

$$J(\phi) = -3\left(\frac{1}{6} + \xi\right)\phi^2$$

□ Now action reduces to simple form:

$$\frac{\mathcal{L}}{\sqrt{-g_J}} = \frac{1}{2} \left(1 + \xi \varphi^2 \right) R_J - \frac{1}{2} g_J^{\mu\nu} \partial_\mu \varphi \partial_\nu \varphi - V_J$$

Daisuke Yoshida

FKLMP model as Pole Inflation

\Box ξ model in Jordan frame:

$$\frac{\mathcal{L}}{\sqrt{-g_J}} = \frac{1}{2} \left(1 + \xi \varphi^2 \right) R_J - \frac{1}{2} g_J^{\mu\nu} \partial_\mu \varphi \partial_\nu \varphi - V_J$$

lacksquare ξ model in Einstein frame $g^E_{\mu\nu} = (1 + \xi \varphi^2) g^J_{\mu\nu}$

$$\frac{\mathcal{L}}{\sqrt{-g_E}} = \frac{1}{2}R_E - \frac{1}{2}K_E(\varphi)g_E^{\mu\nu}\partial_\mu\varphi\partial_\nu\varphi - \frac{V_J}{(1+\xi\varphi^2)^2}$$

Kinetic term has pole at $\varphi \to \infty$ \longrightarrow pole at $\rho = 0$ with $\rho = (1 + \xi \varphi^2)^{-1}$ $K_E(\varphi)(\partial \varphi)^2 = \frac{2(1 + \xi \varphi^2) + 12\xi^2 \varphi^2}{2(1 + \xi \varphi^2)^2} (\partial \varphi)^2 = \left(\frac{1}{4\xi} + \frac{3}{2}\right) \frac{(\partial \rho)^2}{\rho^2} + \frac{\rho^2}{\rho'^2}$

□ V_E does not diverge or vanish at pole if $V_J \propto \varphi^4$. Pole inflation works well:

$$n_s = 1 - \frac{2}{N}, \qquad r = \frac{8}{N^2} \left(\frac{1}{4\xi} + \frac{3}{2}\right)$$

Daisuke Yoshida

1. Basics of Pole Inflation

2.J-sugra and FKLMP Inflation Model

3. Pole Inflarion in J-sugra Beyond FKLMP model

Daisuke Yoshida

Beyond FKLMP

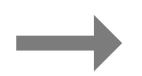
□ FKLMP approach

- Canonical Kinetic terms in Jordan Frame
- Pole inflation

Is FKLMP model unique one which satisfy these 2 conditions?

Our approach

- Canonical Kinetic terms in Jordan frame
- Pole inflation



What conditions are imposed for $\,\,\mathcal{K},\,\,\Phi,\,\,W\,$?

Daisuke Yoshida

Note: with FKLMP frame function

□ Action of J-frame sugra:

$$\frac{\mathcal{L}}{\sqrt{-g_J}} = -\frac{1}{6} \Phi R_J + \left(\frac{1}{3} \Phi g_{\alpha\bar{\beta}} - \frac{\Phi_{\alpha} \Phi_{\bar{\beta}}}{\Phi}\right) g_J^{\mu\nu} \partial_{\mu} z^{\alpha} \partial_{\nu} \bar{z}^{\bar{\beta}} - \frac{1}{4\Phi} \left(\Phi_{\alpha} \partial_{\mu} z^{\alpha} - \Phi_{\bar{\beta}} \partial_{\mu} \bar{z}^{\bar{\beta}} \right) \left(\Phi_{\gamma} \partial_{\nu} z^{\gamma} - \Phi_{\bar{\delta}} \partial_{\nu} \bar{z}^{\bar{\delta}} \right) g_J^{\mu\nu} - V_J$$

FKLMP frame function:

$$\Phi(z,\bar{z}) = -3 + \delta_{\alpha\bar{\beta}} z^{\alpha} \bar{z}^{\bar{\beta}} + J(z) + \bar{J}(\bar{z})$$

• canonical kinetic term: $\frac{1}{3}\Phi g_{\alpha\bar{\beta}} - \frac{\Phi_{\alpha}\Phi_{\bar{\beta}}}{\Phi} = -\delta_{\alpha\bar{\beta}}$ $\delta\mathcal{K} := \mathcal{K} + 3\log\left(-\frac{1}{3}\Phi\right)$ $\delta\mathcal{K}_{\alpha\bar{\beta}} = 0 \qquad \delta\mathcal{K} = h(z) + \bar{h}(\bar{z})$

This is nothing but Kahler transformation from FKLMP Kahler potential!

Non holomorphic extensions are necessary to obtain beyond FKLMP model.

$$\Phi(z,\bar{z}) = -3 + \delta_{\alpha\bar{\beta}} z^{\alpha} \bar{z}^{\bar{\beta}} + J(z,\bar{z})$$

Daisuke Yoshida

Our Frameworks

□ We consider following class of arbitrary functions with 2 scalar fields:

$$\begin{split} \mathcal{K} &= \mathcal{K}(\phi + \bar{\phi}, S\bar{S}, S^2, \bar{S}^2), \\ \Phi &= \Phi(\phi + \bar{\phi}, S\bar{S}, S^2, \bar{S}^2), \\ W &= Sf(\phi) \end{split}$$

□ Inflaton direction:

$$\phi = \bar{\phi} = \frac{\varphi}{\sqrt{2}}, \ S = \bar{S} = 0$$

□ Note: stabilizer field *S* is needed to ensure positivity of the potential;

Kawasaki, Yamaguchi, Yanagida (2000)

$$V_E = e^{\mathcal{K}} \left(-\frac{3W\bar{W}}{V} + g^{\alpha\bar{\beta}} \nabla_{\alpha} W \nabla_{\bar{\beta}} \bar{W} \right)$$

Negative term vanishes at S = 0

$$= \mathrm{e}^{\mathcal{K}} g^{Sar{S}} |f|^2$$
 on inflaton trajectory

Daisuke Yoshida

Conditions for Pole Inflation

- Our 3 conditions:
 - Inflation and stabilizer fields have canonical kinetic term in Jorden frame:

$$\frac{\Phi}{3}g_{\phi\bar{\phi}} - \frac{\Phi_{\phi}\Phi_{\bar{\phi}}}{\Phi} = -1 \qquad \longrightarrow \qquad g_{\phi\bar{\phi}} = \frac{3}{\Phi}\left(\frac{\Phi'(\varphi)^2}{2\Phi} - 1\right)$$
$$\frac{\Phi}{3}g_{S\bar{S}} = -1 \qquad \longrightarrow \qquad g_{S\bar{S}} = -\frac{3}{\Phi}$$

• Kinetic term of inflaton in Einstein frame has pole structure:

$$\begin{aligned} -\frac{1}{2}g_{\phi\bar{\phi}}(\partial\varphi)^2 \to -\frac{1}{2}\frac{a_p}{\rho^p}(\partial\rho)^2 & \longrightarrow \quad g_{\phi\bar{\phi}} \to \frac{a_p}{\rho(\varphi)^p}\rho'(\varphi)^2 \\ \text{at } \rho \to 0 \text{ with some function } \rho(\varphi) \end{aligned}$$

• Inflaton potential in Einstein frame is smooth at the pole:

$$V_E = -\frac{\Phi}{3} e^{\mathcal{K}} |f|^2 \to V_0(1 - c\rho + \cdots)$$

Strategy

□ Differential equation,

1. Assuming functional form of $\Phi(\rho)$, solve above differential equation:

$$\rho = \rho(\varphi) \qquad \qquad \Phi = \Phi(\varphi)$$

2. Determine a Kahler potential through

$$g_{\phi\bar{\phi}} = \frac{3}{\Phi} \left(\frac{\Phi'(\varphi)^2}{2\Phi} - 1 \right) \qquad \qquad g_{S\bar{S}} = -\frac{3}{\Phi}$$

3. Determine super potential f through

$$-\frac{\Phi}{3}\mathrm{e}^{\mathcal{K}}|f|^2 \to V_0(1-c\rho+\cdots)$$

Daisuke Yoshida

1.Solve differential equation

- 1. Assuming functional form of $\Phi(\rho)$, solve differential equation:
 - Assuming p=2 and $\Phi(
 ho)
 ightarrow -A
 ho^{-2}$, our differential equation reduces to

$$(\rho'(\varphi))^2 = \frac{-2\Phi}{\frac{2a_p}{3\rho^p}\Phi^2 - (\partial_\rho\Phi)^2} \qquad \qquad \rho'^2 = \tilde{\xi}\frac{\rho^4}{A} \qquad \text{with} \quad \tilde{\xi} = \frac{3}{a_2 - 6}$$

• Solutions can be written as

$$\rho(\varphi) = \frac{A}{\sqrt{\xi}(C+\varphi)}$$

with integration constant *C*

Then frame function can be obtained as

$$\Phi(\varphi) = -\tilde{\xi}C^2 \left(1 + \frac{1}{C}\varphi\right)^2 = -3\left(1 + \sqrt{\frac{\tilde{\xi}}{3}}\varphi\right)^2$$

Here integration constant is chosen as

$$C = \sqrt{3/\tilde{\xi}}$$
 so that $\frac{\mathcal{L}}{\sqrt{-g_J}} \supset -\frac{\Phi}{6}R^J = \frac{1}{2}R^J + \text{nonminimal couplings}$

Daisuke Yoshida

2.Determine a Kahler potential

2. Determine a Kahler potential

$$g_{\phi\bar{\phi}} = \frac{3}{\Phi} \left(\frac{\Phi'(\varphi)^2}{2\Phi} - 1 \right)$$

$$g_{\phi\bar{\phi}} = \partial_{\phi}\partial_{\bar{\phi}}\mathcal{K} = \frac{1}{2}\partial_{\varphi}\partial_{\varphi}\mathcal{K}(\varphi)$$

$$\Phi(\varphi) = -3\left(1 + \sqrt{\frac{\tilde{\xi}}{3}}\varphi\right)^2$$

$$\mathcal{K} = -12\left(1 + \frac{1}{2\tilde{\xi}}\right)\log\left(1 + \sqrt{\frac{\xi}{3}}\varphi\right) \quad \text{on inflaton trajectory}$$

$$\phi = \bar{\phi} = \frac{\varphi}{\sqrt{2}}, \ S = \bar{S} = 0$$

$$\mathcal{K} = -12\left(1 + \frac{1}{2\tilde{\xi}}\right)\log\left(1 + \sqrt{\frac{\xi}{6}}\left(\phi + \bar{\phi}\right)\right)$$

Note: here *S* dependence are omitted.

3.Determine a super potential

- **3**. Determine a super potential $W = Sf(\phi)$
 - Function *f* can be determined from the requirement

$$V_E = -\frac{\Phi}{3} e^{\mathcal{K}} |f|^2 \to V_0(1 - c\rho + \cdots) \qquad \text{at } \rho \to 0$$

• Left hand side can be evaluated as

$$V_E = -\left(1 + \sqrt{\frac{\tilde{\xi}}{3}}\varphi\right)^{-10 - \frac{6}{\xi}} |f|^2$$

• In order for V_E to be constant at $\varphi \to \infty$ ($\rho \to 0$),

$$f(\phi) = \lambda \phi^m \qquad \text{with} \quad m = 5 + \frac{s}{\tilde{\xi}}$$
$$V_E \to |\lambda|^2 \left(\frac{3}{2\tilde{\xi}}\right)^m \left(1 - 2m\sqrt{\frac{3(1+2\tilde{\xi})}{A}}\rho + \cdots\right) \qquad \text{at } \rho \to 0$$

9

Daisuke Yoshida

Note: Consistency check

□ We assumed following two conditions;

• Stabilizer field also has canonical kinetic term in Jordan frame:

$$g_{S\bar{S}} = -\frac{3}{\Phi}$$

• Inflaton direction is $Re \phi$.

$$\phi - \bar{\phi} = S = \bar{S} = 0$$

□ These two conditions are satisfied if we includes *S* dependence in Kahler potential as

$$\mathcal{K} = -3\log\left[\left(1+\sqrt{\frac{\tilde{\xi}}{6}}(\phi+\bar{\phi})\right)^2 - \frac{1}{3}|S|^2\right] - 6\left(1+\frac{1}{\tilde{\xi}}\right)\log\left(1+\sqrt{\frac{\tilde{\xi}}{6}}(\phi+\bar{\phi})\right) - \frac{3}{4}\zeta|S|^4$$

Masses of $Im(\phi)$ and *S* are sufficiently large!

Daisuke Yoshida

<u>Results</u>

□ We have derived all arbitrary functions of Jordan frame supergravity;

$$\begin{split} \Phi(\varphi) &= -3\left(1 + \sqrt{\frac{\tilde{\xi}}{6}}(\phi + \bar{\phi})\right)^2 \\ \mathcal{K} &= -12\left(1 + \frac{1}{2\tilde{\xi}}\right)\log\left(1 + \sqrt{\frac{\tilde{\xi}}{6}}\left(\phi + \bar{\phi}\right)\right) \\ W &= \lambda S\phi^m \qquad \text{with} \qquad m = 5 + \frac{3}{\tilde{\xi}} \qquad m \text{ is integer if } \tilde{\xi} = 1 \text{ or } 3 \end{split}$$

- Inflaton has canonical kinetic term in Jordan frame
- Pole inflation works well

$$\frac{\mathcal{L}}{\sqrt{-g_E}} = \frac{1}{2}R - \frac{a_2}{\rho^2}(\partial\rho)^2 - V_0(1-c\rho) + \cdots$$

$$a_{2} = 6\left(1 + \frac{1}{2\tilde{\xi}}\right)$$
$$V_{0} = |\lambda|^{2} \left(\frac{3}{2\tilde{\xi}}\right)^{m}$$

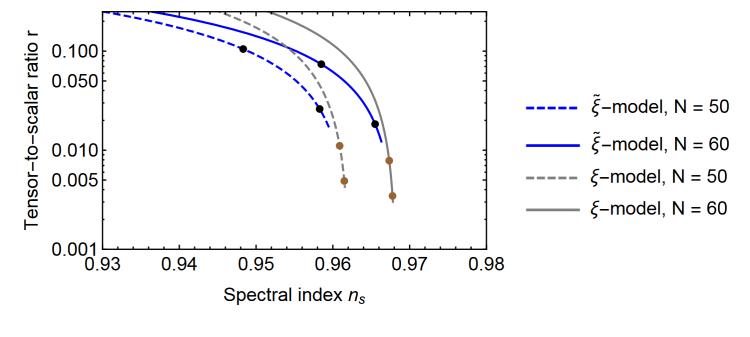
Prediction of our model

□ From the general argument of pole inflation,

$$n_s = 1 - \frac{2}{N} \qquad r = \frac{48}{N^2} \left(1 + \frac{1}{2\tilde{\xi}} \right) \qquad \mathcal{P}_{\zeta} = \frac{|\lambda|^2 \tilde{\xi} N^2}{36\pi^2 (1 + 2\tilde{\xi})} \left(\frac{3}{2\tilde{\xi}} \right)^m$$

Numerical calculations

at leading order of N



D Our model has lower bound of r; $r > 48/N^2$

Daisuke Yoshida

Relation with alpha attractor model

Sumper symmetric α attractor model: Cecotti, Kallosh (2014) Inflation model based on Einstein frame sugra with free parameter $\alpha > 0$ with

$$\mathcal{K}=-3lpha\log(T+ar{T})$$
 omitting stabilizer field $r=rac{12}{N^2}lpha$ without lower bound

• Our (and FKLMP) model reduces to alpha attractor model in Einstein frame:

$$\mathcal{K} = -12\left(1 + \frac{1}{2\tilde{\xi}}\right)\log\left(1 + \sqrt{\frac{\tilde{\xi}}{6}}\left(\phi + \bar{\phi}\right)\right)$$

Comparing the Kahler potential of α attractor model, we find

$$\alpha = 4\left(1 + \frac{1}{2\tilde{\xi}}\right) \qquad T = \frac{1}{2} + \sqrt{\frac{\tilde{\xi}}{6}}\phi$$

Now parameter α has lower bound: $\alpha > 4$, which corresponds to $r > 48/N^2$.

□ Note: super potential is different in each theory and prediction is not equivalent at subleading order.

Daisuke Yoshida

Origin of the lower bound of r

 \square If we start from α attractor model in Einstein frame, any positive value of α should be allowed.

Then where does our constraint $\alpha > 4$ come from?

□ It is clear from the frame function (= the conformal factor) in our Jordan frame.

$$\Phi = -3\left(1 + \sqrt{\frac{1}{3(\alpha - 4)}}(\phi + \bar{\phi})\right)^2$$

which is complex valuable when $\alpha < 4$ and then Jordan frame metric is ill defined.

 \square Thus lower bound of α , and hence that of tensor-to-scalar ratio r, are key observable quantity to distinguish the model based on Jordan frame from other models which related by conformal transformation.

$$r > 48/N^2$$
, $r > 12/N^2$, $r > 0$

Our model,

FKLMP model,

alpha attractor model

<u>Summary</u>

D Our findings:

- Non-horomorphic extension of frame function is necessary to construct Inflation models beyond FKLMP. $\Phi(z, \bar{z}) = -3 + \delta_{\alpha\bar{\beta}} z^{\alpha} \bar{z}^{\bar{\beta}} + J(z, \bar{z})$
- We give one example of pole inflation model in J-sugra.

$$\Phi = -3\left(1 + \sqrt{\frac{\tilde{\xi}}{6}}(\phi + \bar{\phi})\right)^2 \qquad \mathcal{K} = -12\left(1 + \frac{1}{2\tilde{\xi}}\right)\log\left(1 + \sqrt{\frac{\tilde{\xi}}{6}}\left(\phi + \bar{\phi}\right)\right) \qquad W = \lambda S\phi^{5+3/\tilde{\xi}}$$

where inflaton has canonical kinetic term in Jordan frame. In this model r has lower bound: $r > 48/N^2$.

 Kinetic structure of our model and FKLMP model are equivalent with that of super symmetric α-attractor model with a lower bound of α, which comes from positivity of a conformal factor.

Discussions:

- Is the log type Kahler potential natural ? Are there any preference from high energy theory?
- We use ad-hoc assumptions like $\Phi(\rho) \rightarrow -A\rho^{-2}$. Is there room to construct yet another pole inflation models based on J-sugra.