Pole Inflation in Jordan Frame SUGRA

Daisuke Yoshida (McGill)

Based on arXiv:1709.03440 with

Ken'ichi Saikewa (DESY), Masahide Yamaguchi (Tokyo Institute of Technology), Yasuho Yamashita (Yukawa Institute of Theoretical Physics(YITP))

Sep. 27, 2017, Journal Club at McGill

1.Basics of Pole Inflation

2.J-sugra and FKLMP Inflation Model

3.Pole Inflation in J-sugra Beyond FKLMP model

1.Basics of Pole Inflation

2.J-sugra and FKLMP Inflation Model

3.Pole Inflation in J-sugra Beyond FKLMP model

Observation about Inflation

 \Box Observation of CMB gives us much information about inflation!

- Curvature power spectrum: $P_{\zeta} \sim O(10^{-10})$
- Tensor to scalar ratio: $r < 0.15$
- Spectral index: $n_s \sim 0.96$

Daisuke Yoshida Pole Inflation in Jordan Frame Supergravity (arXiv:1709.03440)

Basics of Slow Roll Inflation 1

 \square Simplest inflation model with canonical scalar field:

$$
S=\int d^4x\sqrt{-g}\left[\frac{1}{2}R-\frac{1}{2}(\nabla\phi)^2-V(\phi)\right]
$$

 \Box Inflation occurs when slow roll parameters are sufficiently small;

$$
\epsilon = \frac{1}{2} \left(\frac{V'}{V} \right)^2 \ll 1, \ \eta = \frac{V''}{V} \ll 1
$$

 \Box Slow-roll inflation gives predictions in terms of a potential

$$
P_{\zeta} = \frac{V}{24\pi^2 \epsilon}, \ n_s = 1 + 2\eta - 6\epsilon, \ r = 16\epsilon
$$

Basics of Slow Roll Inflation 2

 \Box Predictions strongly depend on potential:

$$
P_{\zeta} = \frac{V}{24\pi^2\epsilon},\,\, n_s = 1 + 2\eta - 6\epsilon,\,\, r = 16\epsilon \qquad \qquad \epsilon = \frac{1}{2} \big(\frac{V'}{V}\big)^2 \ll 1,\, \eta = \frac{V''}{V} \ll 1
$$

 \Box Example: power law potential $V(\phi) = g\phi^n$, Number of e-folding is given by

$$
N(\phi) := \log(a_e/a(\phi)) = \int_{\phi_e}^{\phi} d\phi \frac{V}{V'} \sim \frac{1}{2n} \phi^2
$$

 \cdot n_s and r can be represented by N as

$$
n_s = 1 - \frac{n+2}{2N}, \ r = \frac{4n}{N}
$$

・ This model is excluded from the observation.

$$
r = \frac{8n}{n+2}(1-n_s) \sim \frac{8n}{n+2} \times 0.04 = \begin{cases} 0.16 \text{ for } n=2\\ 0.19 \text{ for } n=3 \end{cases}
$$

 \overline{a}

Pole Inflation

 \Box pole inflation: inflation driven by the pole in kinetic term

Galante, Kallosh, Linde, Rosest (2015)

$$
S = \int d^4x \sqrt{-g} \left[\frac{1}{2}R - \frac{1}{2}K(\rho)(\nabla \rho)^2 - V(\rho) \right]
$$

・ Kinetic term has a pole:

$$
K(\rho)=\frac{a_p}{\rho^p}\left(1+\mathcal{O}(\rho)\right)
$$

・ Potential is finite at pole:

$$
V(\rho) = V_0(1 - c\rho + \mathcal{O}(\rho^2))
$$

\Box Ideas

In terms of canonically normalized field, potential is stretched near pole.

- ・ Flat potential is realized!
- ・ Predictions do not depend on the detail of potential!

Prediction of pole inflation with p = 2

 \Box Let us derive the prediction of pole inflation with $p=2$

$$
S = \int d^4x \sqrt{-g} \left[\frac{1}{2} R - \frac{1}{2} K(\rho) (\nabla \rho)^2 - V(\rho) \right] \qquad K(\rho) = \frac{a_2}{\rho^2} (1 + \mathcal{O}(\rho))
$$

$$
\phi = e^{-\frac{\rho}{\sqrt{a_2}}} \qquad V(\rho) = V_0 (1 - c\rho + \mathcal{O}(\rho^2))
$$

$$
S = \int d^4x \sqrt{-g} \left[\frac{1}{2} R - \frac{1}{2} (\nabla \phi)^2 - V(e^{-\frac{\phi}{\sqrt{a_2}}}) \right]
$$

 \Box By using the result of slow-roll inflation, we obtain

$$
N(\phi) = \int_{\phi_e}^{\phi} d\phi \frac{V}{V'} \sim \frac{a_2}{c} e^{\frac{\phi}{\sqrt{a_2}}} \qquad \epsilon = \frac{1}{2} \left(\frac{V'}{V} \right) = \frac{a_2}{2} \frac{1}{N} \qquad \eta = \frac{V''}{V} = -\frac{1}{N}
$$

at $\rho \to 0, \phi \to \infty, N \to \infty$

and

$$
P_{\zeta} = \frac{V_0}{24\pi^2} \frac{2N^2}{a_2}, \ n_s = 1 - \frac{1}{N}, \ r = \frac{8a_2}{N^2}
$$

Predictions do not depend on the detail of potential and coincide with observation with $a_2 \sim O(1)$. $(n_s \sim 0.96 \rightarrow r \sim a_2 * 0.013)$

Pole inflation from Jordan frame

I IF fundamental physics prefer to Jorden frame, it would be natural inflaton has the canonical kinetic term there.

This setting naturally leads to non-trivial kinetic term in Einstein frame!

$$
\mathcal{L} = \sqrt{-g_J} \left(f(\rho) R^J - \frac{1}{2} g_J^{\mu\nu} \partial_\mu \rho \partial_\nu \rho - V_J(\rho) \right)
$$

$$
g_J^{\mu\nu} = f g_E^{\mu\nu}
$$

$$
\mathcal{L} = \sqrt{-g_E} \left(\frac{1}{2} R^E - K(\rho) g_E^{\mu\nu} \partial_\mu \rho \partial_\nu \rho + \cdots \right)
$$

So it would be possible to realize pole inflation in this frame work.

 \Box We investigate this mechanism based on Jorden frame supergravity.

1.Basics of Pole Inflation

2.J-sugra and FKLMP Inflation Model

3.Pole Inflation in J-sugra Beyond FKLMP model

Bosonic part of J-SUGRA

 \Box Action of bosonic part of Jordan frame super gravity (without gauge fields)

$$
\begin{split} \frac{\mathcal{L}}{\sqrt{-g_{J}}} &= -\frac{1}{6} \Phi R_{J} + \left(\frac{1}{3} \Phi g_{\alpha\bar{\beta}} - \frac{\Phi_{\alpha} \Phi_{\bar{\beta}}}{\Phi}\right) g_{J}^{\mu\nu} \partial_{\mu} z^{\alpha} \partial_{\nu} \bar{z}^{\bar{\beta}} \\ &- \frac{1}{4 \Phi} \left(\Phi_{\alpha} \partial_{\mu} z^{\alpha} - \Phi_{\bar{\beta}} \partial_{\mu} \bar{z}^{\bar{\beta}}\right) \left(\Phi_{\gamma} \partial_{\nu} z^{\gamma} - \Phi_{\bar{\delta}} \partial_{\nu} \bar{z}^{\bar{\delta}}\right) g_{J}^{\mu\nu} - V_{J} \end{split}
$$

 \Box Dynamical variables;

 z^{α} : complex scalar fields $g_{\mu\nu}^{J}$: space time metric in Jordan frame

$$
g_{\alpha\bar{\beta}} = \partial_{\alpha}\partial_{\beta}\mathcal{K}
$$

$$
V_J = \frac{1}{9}\Phi^2 e^{\mathcal{K}} \left(-3W\bar{W} + g^{\alpha\bar{\beta}}\nabla_{\alpha}W\nabla_{\bar{\beta}}\bar{W} \right)
$$

$$
\nabla_{\alpha}W = \partial_{\alpha}W + (\partial_{\alpha}\mathcal{K})W
$$

 $\Phi_{\alpha} = \partial_{\alpha} \Phi$

$$
\blacksquare
$$
 Arbitrary functions in theory;

- Khaler potential $\mathcal{K}(z^{\alpha},\bar{z}^{\bar{\beta}})$
- $W(z^\alpha,\bar z^{\bar\beta})$ Super potential
- $\Phi(z^\alpha,\bar z^{\bar\beta})$ • Frame function

Einstein Frame SUGRA

 \Box Einstein frame SUGRA is obtained by conformal transformation of metric

$$
\begin{split}\n\frac{\mathcal{L}}{\sqrt{-g_{J}}} &= -\frac{1}{6} \Phi R_{J} + \left(\frac{1}{3} \Phi g_{\alpha\bar{\beta}} - \frac{\Phi_{\alpha} \Phi_{\bar{\beta}}}{\Phi}\right) g_{J}^{\mu\nu} \partial_{\mu} z^{\alpha} \partial_{\nu} \bar{z}^{\bar{\beta}} \\
&- \frac{1}{4\Phi} \left(\Phi_{\alpha} \partial_{\mu} z^{\alpha} - \Phi_{\bar{\beta}} \partial_{\mu} \bar{z}^{\bar{\beta}}\right) \left(\Phi_{\gamma} \partial_{\nu} z^{\gamma} - \Phi_{\bar{\delta}} \partial_{\nu} \bar{z}^{\bar{\delta}}\right) g_{J}^{\mu\nu} - V_{J} \\
&\qquad \qquad g_{\mu\nu}^{E} = -\frac{1}{3} \Phi g_{\mu\nu}^{J} \\
\frac{\mathcal{L}}{\sqrt{-g_E}} &= \frac{1}{2} R_E - g_{\alpha\bar{\beta}} g_E^{\mu\nu} \partial_{\mu} z^{\alpha} \partial_{\nu} \bar{z}^{\bar{\beta}} - V_E \qquad g_{\alpha\bar{\beta}} = \partial_{\alpha} \partial_{\beta} \mathcal{K} \\
& V_E = e^{\kappa} \left(-3W\bar{W} + g^{\alpha\bar{\beta}} \nabla_{\alpha} W \nabla_{\bar{\beta}} \bar{W}^{\bar{\alpha}}\right)\nabla_{\alpha} \bar{W}^{\bar{\alpha}}\nabla_{\beta} \bar{W}^{\bar{\
$$

 \Box Frame function does not appear.

 $\mathcal{K}(z^{\alpha},\bar{z}^{\bar{\beta}})$, $W(z^{\alpha},\bar{z}^{\bar{\beta}})$: arbitrary function of Einstein frame SUGRA

 $\Phi(z^\alpha,\bar z^{\bar\beta})$: Function to characterize Jordan frame

FKLMP model

 \Box Inflation model in Jordan frame super gravity.

D FKLMP model

$$
\mathcal{K}(z,\bar{z}) = -3\log\left(-\frac{1}{3}\Phi\right)
$$

$$
\Phi(z,\bar{z}) = -3 + \delta_{\alpha\bar{\beta}}z^{\alpha}\bar{z}^{\bar{\beta}} + J(z) + \bar{J}(\bar{z})
$$

Assuming fields configuration satisfies

$$
z^{\alpha} = \bar{z}^{\bar{\alpha}} \qquad \qquad \Phi_{\alpha} \partial_{\mu} z^{\alpha} - \Phi_{\bar{\beta}} \partial_{\mu} \bar{z}^{\bar{\beta}} = 0
$$

$$
\frac{\mathcal{L}}{\sqrt{-g_J}} = -\frac{1}{6} \Phi R_J - \delta_{\alpha \bar{\beta}} g_J^{\mu \nu} \partial_{\mu} z^{\alpha} \partial_{\nu} \bar{z}^{\beta} - V_J
$$

Scalar fields have canonical kinetic terms !

 \Box In original paper, author investigate Higgs inflation in the context of NMSSM. Here we focus on simpler toy model than realistic Higgs inflation.

p.

FKLMP model with Single Scalar Field

 \Box Let us focus on FKLMP model with single field: $z^{\alpha} = \phi$

$$
\mathcal{K} = -3\log\left(-\frac{1}{3}\Phi\right)
$$

\n
$$
\Phi(\phi, \bar{\phi}) = -3 + \phi\bar{\phi} + J(\phi) + \bar{J}(\bar{\phi})
$$

\n
$$
\phi = \bar{\phi} = \frac{\varphi}{\sqrt{2}}
$$

 \blacksquare For simplicity we focus on following choice of $J(\phi)$:

$$
J(\phi)=-3\left(\frac{1}{6}+\xi\right)\phi^2
$$

 \Box Now action reduces to simple form:

$$
\frac{\mathcal{L}}{\sqrt{-g_J}} = \frac{1}{2} \left(1 + \xi \varphi^2 \right) R_J - \frac{1}{2} g^{\mu \nu}_J \partial_\mu \varphi \partial_\nu \varphi - V_J
$$

FKLMP model as Pole Inflation

 \blacksquare ξ model in Jordan frame:

$$
\frac{\mathcal{L}}{\sqrt{-gJ}} = \frac{1}{2} \left(1 + \xi \varphi^2 \right) R_J - \frac{1}{2} g_J^{\mu \nu} \partial_\mu \varphi \partial_\nu \varphi - V_J
$$

 $\Box \xi$ model in Einstein frame $g_{\mu\nu}^E = (1 + \xi \varphi^2) g_{\mu\nu}^J$

$$
\frac{\mathcal{L}}{\sqrt{-g_E}} = \frac{1}{2} R_E - \frac{1}{2} K_E(\varphi) g_E^{\mu\nu} \partial_\mu \varphi \partial_\nu \varphi - \frac{V_J}{(1 + \xi \varphi^2)^2}
$$

Kinetic term has pole at $\varphi \to \infty$ \longrightarrow pole at $\rho = 0$ with $\rho = (1 + \xi \varphi^2)^{-1}$

$$
K_E(\varphi)(\partial \varphi)^2 = \frac{2(1 + \xi \varphi^2) + 12\xi^2 \varphi^2}{2(1 + \xi \varphi^2)^2} (\partial \varphi)^2 = \left(\frac{1}{4\xi} + \frac{3}{2}\right) \frac{(\partial \rho)^2}{\rho^2} + \frac{\rho^2}{\rho'^2}
$$

 \Box V_E does not diverge or vanish at pole if $V_J \propto \varphi^4$. Pole inflation works well:

$$
n_s = 1 - \frac{2}{N}, \qquad r = \frac{8}{N^2} \left(\frac{1}{4\xi} + \frac{3}{2} \right)
$$

1.Basics of Pole Inflation

2.J-sugra and FKLMP Inflation Model

3.Pole Inflarion in J-sugra Beyond FKLMP model

Beyond FKLMP

 \Box FKLMP approach

- Canonical Kinetic terms in Jordan Frame
- Pole inflation

Is FKLMP model unique one which satisfy these 2 conditions?

\Box Our approach

- Canonical Kinetic terms in Jordan frame
- Pole inflation

What conditions are imposed for \mathcal{K}, Φ, W ?

Note: with FKLMP frame function

 \Box Action of J-frame sugra:

$$
\frac{\mathcal{L}}{\sqrt{-g_J}} = -\frac{1}{6} \Phi R_J + \left(\frac{1}{3} \Phi g_{\alpha\bar{\beta}} - \frac{\Phi_\alpha \Phi_{\bar{\beta}}}{\Phi}\right) g_J^{\mu\nu} \partial_\mu z^\alpha \partial_\nu \bar{z}^{\bar{\beta}} \n- \frac{1}{4\Phi} \left(\Phi_\alpha \partial_\mu z^\alpha - \Phi_{\bar{\beta}} \partial_\mu \bar{z}^{\bar{\beta}}\right) \left(\Phi_\gamma \partial_\nu z^\gamma - \Phi_{\bar{\delta}} \partial_\nu \bar{z}^{\bar{\delta}}\right) g_J^{\mu\nu} - V_J
$$

・ FKLMP frame function: \overline{d}

$$
\Phi(z,\bar{z})=-3+\delta_{\alpha\bar{\beta}}z^{\alpha}\bar{z}^{\bar{\beta}}+J(z)+\bar{J}(\bar{z})
$$

 $-\frac{1}{3}\Phi g_{\alpha\bar{\beta}}-\frac{\Phi_\alpha\Phi_{\bar{\beta}}}{\Phi}=-\delta_{\alpha\bar{\beta}}$ ・ canonical kinetic term: $\delta {\cal K} := {\cal K} + 3 \log \left(- \frac{1}{3} \Phi \right)$ $\delta \mathcal{K}_{\alpha \bar{\beta}} = 0$ $\delta \mathcal{K} = h(z) + \bar{h}(\bar{z})$

This is nothing but Kahler transformation from FKLMP Kahler potential!

Non holomorphic extensions are necessary to obtain beyond FKLMP model.

$$
\Phi(z,\bar{z}) = -3 + \delta_{\alpha\bar{\beta}} z^{\alpha} \bar{z}^{\bar{\beta}} + J(z,\bar{z})
$$

0

Our Frameworks

■ We consider following class of arbitrary functions with 2 scalar fields:

$$
\mathcal{K} = \mathcal{K}(\phi + \bar{\phi}, S\bar{S}, S^2, \bar{S}^2),
$$

\n
$$
\Phi = \Phi(\phi + \bar{\phi}, S\bar{S}, S^2, \bar{S}^2),
$$

\n
$$
W = Sf(\phi)
$$

 \Box Inflaton direction:

$$
\phi = \bar{\phi} = \frac{\varphi}{\sqrt{2}}, \ S = \bar{S} = 0
$$

 \blacksquare Note: stabilizer field S is needed to ensure positivity of the potential;

Kawasaki, Yamaguchi, Yanagida (2000)

$$
V_E = e^{\mathcal{K}} \left(-3 W \bar{W} + g^{\alpha \bar{\beta}} \nabla_{\alpha} W \nabla_{\bar{\beta}} \bar{W} \right)
$$

Negative term vanishes at $S = 0$

$$
= \mathrm{e}^{\mathcal{K}} g^{S\bar{S}} |f|^2 \quad \text{ on inflation trajectory}
$$

Conditions for Pole Inflation

\Box Our 3 conditions:

• Inflation and stabilizer fields have canonical kinetic term in Jorden frame:

$$
\frac{\Phi}{3}g_{\phi\bar{\phi}} - \frac{\Phi_{\phi}\Phi_{\bar{\phi}}}{\Phi} = -1 \qquad g_{\phi\bar{\phi}} = \frac{3}{\Phi}\left(\frac{\Phi'(\varphi)^2}{2\Phi} - 1\right)
$$
\n
$$
\frac{\Phi}{3}g_{S\bar{S}} = -1 \qquad g_{S\bar{S}} = -\frac{3}{\Phi}
$$

• Kinetic term of inflaton in Einstein frame has pole structure:

$$
-\frac{1}{2}g_{\phi\bar{\phi}}(\partial\varphi)^2 \to -\frac{1}{2}\frac{a_p}{\rho^p}(\partial\rho)^2 \qquad \implies \qquad g_{\phi\bar{\phi}} \to \frac{a_p}{\rho(\varphi)^p}\rho'(\varphi)^2
$$

at $\rho \to 0$ with some function $\rho(\varphi)$

• Inflaton potential in Einstein frame is smooth at the pole:

$$
V_E = -\frac{\Phi}{3} e^{\mathcal{K}} |f|^2 \to V_0 (1 - c\rho + \cdots)
$$

Strategy

D Differential equation,

$$
g_{\phi\bar{\phi}} = \frac{3}{\Phi} \left(\frac{\Phi'(\varphi)^2}{2\Phi} - 1 \right) \qquad \qquad g_{\phi\bar{\phi}} = \frac{a_p}{\rho(\varphi)^p} \rho'(\varphi)^2
$$

$$
(\rho'(\varphi))^2 = \frac{-2\Phi}{\frac{2a_p}{3\rho^p}\Phi^2 - (\partial_\rho \Phi)^2}
$$

1. Assuming functional form of $\Phi(\rho)$, solve above differential equation:

$$
\rho = \rho(\varphi) \qquad \qquad \Phi = \Phi(\varphi)
$$

2. Determine a Kahler potential through

$$
g_{\phi\bar{\phi}} = \frac{3}{\Phi} \left(\frac{\Phi'(\varphi)^2}{2\Phi} - 1 \right) \qquad \qquad g_{S\bar{S}} = -\frac{3}{\Phi}
$$

3. Determine super potential f through

$$
-\frac{\Phi}{3}e^{\mathcal{K}}|f|^2 \to V_0(1-c\rho+\cdots)
$$

1.Solve differential equation

- 1. Assuming functional form of $\Phi(\rho)$, solve differential equation:
	- Assuming $p = 2$ and $\Phi(\rho) \rightarrow -A\rho^{-2}$, our differential equation reduces to

$$
(\rho'(\varphi))^2 = \frac{-2\Phi}{\frac{2a_p}{3\rho^p}\Phi^2 - (\partial_\rho\Phi)^2}
$$
\n
$$
\rho'^2 = \tilde{\xi}\frac{\rho^4}{A}
$$
\nwith\n
$$
\tilde{\xi} = \frac{3}{a_2 - 6}
$$

• Solutions can be written as

$$
\rho(\varphi) = \frac{A}{\sqrt{\xi}(C + \varphi)}
$$

with integration constant *C*

• Then frame function can be obtained as

$$
\Phi(\varphi) = -\tilde{\xi}C^2 \left(1 + \frac{1}{C}\varphi\right)^2 = -3\left(1 + \sqrt{\frac{\tilde{\xi}}{3}}\varphi\right)^2
$$

Here integration constant is chosen as

$$
C = \sqrt{3/\tilde{\xi}}
$$
 so that $\frac{\mathcal{L}}{\sqrt{-g_J}} \supset -\frac{\Phi}{6} R^J = \frac{1}{2} R^J + \text{nonminimal couplings}$

2.Determine a Kahler potential

2. Determine a Kahler potential

$$
g_{\phi\bar{\phi}} = \frac{3}{\Phi} \left(\frac{\Phi'(\varphi)^2}{2\Phi} - 1 \right)
$$

\n
$$
g_{\phi\bar{\phi}} = \partial_{\phi}\partial_{\bar{\phi}}\mathcal{K} = \frac{1}{2}\partial_{\varphi}\partial_{\varphi}\mathcal{K}(\varphi)
$$

\n
$$
\Phi(\varphi) = -3\left(1 + \sqrt{\frac{\tilde{\xi}}{3}}\varphi\right)^2
$$

\n
$$
\mathcal{K} = -12\left(1 + \frac{1}{2\tilde{\xi}}\right) \log\left(1 + \sqrt{\frac{\xi}{3}}\varphi\right) \quad \text{on inflation trajectory}
$$

\n
$$
\phi = \bar{\phi} = \frac{\varphi}{\sqrt{2}}, \ S = \bar{S} = 0
$$

\n
$$
\mathcal{K} = -12\left(1 + \frac{1}{2\tilde{\xi}}\right) \log\left(1 + \sqrt{\frac{\xi}{6}}\left(\phi + \bar{\phi}\right)\right)
$$

Note: here S dependence are omitted.

3.Determine a super potential

- 3. Determine a super potential $W = Sf(\phi)$
	- Function f can be determined from the requirement

$$
V_E = -\frac{\Phi}{3} e^{\mathcal{K}} |f|^2 \to V_0 (1 - c\rho + \cdots) \qquad \text{at } \rho \to 0
$$

• Left hand side can be evaluated as

$$
V_E = -\left(1 + \sqrt{\frac{\tilde{\xi}}{3}}\varphi\right)^{-10 - \frac{6}{\xi}} |f|^2
$$

• In order for V_E to be constant at $\varphi \to \infty$ ($\rho \to 0$),

$$
f(\phi) = \lambda \phi^m \qquad \text{with} \quad m = 5 + \frac{3}{\tilde{\xi}}
$$

$$
V_E \to |\lambda|^2 \left(\frac{3}{2\tilde{\xi}}\right)^m \left(1 - 2m\sqrt{\frac{3(1+2\tilde{\xi})}{A}}\rho + \cdots\right) \qquad \text{at } \rho \to 0
$$

 $\boldsymbol{\Omega}$

Note: Consistency check

 \Box We assumed following two conditions;

• Stabilizer field also has canonical kinetic term in Jordan frame:

$$
g_{S\bar{S}}=-\frac{3}{\Phi}
$$

• Inflaton direction is $Re \phi$.

$$
\phi - \bar{\phi} = S = \bar{S} = 0
$$

 \Box These two conditions are satisfied if we includes S dependence in Kahler potential as

$$
\mathcal{K} = -3\log\left[\left(1+\sqrt{\frac{\tilde{\xi}}{6}}(\phi+\bar{\phi})\right)^2 - \frac{1}{3}|S|^2\right] - 6\left(1+\frac{1}{\tilde{\xi}}\right)\log\left(1+\sqrt{\frac{\tilde{\xi}}{6}}(\phi+\bar{\phi})\right) - \frac{3}{4}\zeta|S|^4
$$

$$
\frac{m^2_{Im(\phi)}}{H^2_{inf}} = \frac{2(3+5\tilde{\xi})}{1+2\tilde{\xi}} > 1 \qquad \frac{m^2_S}{H^2_{inf}} = \zeta \tilde{\xi}^2 \varphi^4 \gg 1 \qquad \qquad \mathop{\rm{H}}_{\substack{d_{inf} = V_E/3 \, = \, \frac{|\lambda|^2}{3} \left(\frac{3}{2\tilde{\xi}} \right)^m}}
$$

Masses of Im(ϕ) and S are sufficiently large!

Results

■ We have derived all arbitrary functions of Jordan frame supergravity;

$$
\Phi(\varphi) = -3\left(1 + \sqrt{\frac{\tilde{\xi}}{6}}(\phi + \bar{\phi})\right)^2
$$
\n
$$
\mathcal{K} = -12\left(1 + \frac{1}{2\tilde{\xi}}\right)\log\left(1 + \sqrt{\frac{\tilde{\xi}}{6}}(\phi + \bar{\phi})\right)
$$
\nmatrix S dependence

\n
$$
W = \lambda S\phi^m \qquad \text{with} \qquad m = 5 + \frac{3}{\tilde{\xi}} \qquad \text{in is integer if } \qquad \tilde{\xi} = 1 \text{ or } 3
$$

- Inflaton has canonical kinetic term in Jordan frame
- Pole inflation works well

$$
\frac{\mathcal{L}}{\sqrt{-g_E}} = \frac{1}{2}R - \frac{a_2}{\rho^2}(\partial \rho)^2 - V_0(1 - c\rho) + \cdots
$$

$$
a_2 = 6\left(1 + \frac{1}{2\tilde{\xi}}\right)
$$

$$
V_0 = |\lambda|^2 \left(\frac{3}{2\tilde{\xi}}\right)^m
$$

Prediction of our model

 \Box From the general argument of pole inflation,

$$
n_s = 1 - \frac{2}{N} \qquad \qquad r = \frac{48}{N^2} \left(1 + \frac{1}{2\tilde{\xi}} \right) \qquad \mathcal{P}_\zeta = \frac{|\lambda|^2 \tilde{\xi} N^2}{36\pi^2 (1 + 2\tilde{\xi})} \left(\frac{3}{2\tilde{\xi}} \right)^m
$$

 \Box Numerical calculations

at leading order of N

 \Box Our model has lower bound of r ; $r > 48/N^2$

Relation with alpha attractor model

 \Box Sumper symmetric α attractor model: Inflation model based on Einstein frame sugra with free parameter $\alpha > 0$ with Cecotti, Kallosh (2014)

$$
\mathcal{K} = -3\alpha\log(T+\bar{T})
$$
 omitting stabilizer field

$$
r = \frac{12}{N^2}\alpha
$$
 without lower bound

 \Box Our (and FKLMP) model reduces to alpha attractor model in Einstein frame:

$$
\mathcal{K} = -12\left(1 + \frac{1}{2\tilde{\xi}}\right)\log\left(1 + \sqrt{\frac{\tilde{\xi}}{6}}\left(\phi + \bar{\phi}\right)\right)
$$

Comparing the Kahler potential of α attractor model, we find

$$
\alpha = 4\left(1 + \frac{1}{2\tilde{\xi}}\right) \qquad T = \frac{1}{2} + \sqrt{\frac{\tilde{\xi}}{6}}\phi
$$

Now parameter α has lower bound: $\alpha > 4$, which corresponds to $r > 48/N^2$.

 \Box Note: super potential is different in each theory and prediction is not equivalent at subleading order.

Origin of the lower bound of r

 \Box If we start from α attractor model in Einstein frame, any positive value of α should be allowed.

Then where does our constraint $\alpha > 4$ come from?

 \Box It is clear from the frame function (= the conformal factor) in our Jordan frame.

$$
\Phi=-3\left(1+\sqrt{\frac{1}{3(\alpha-4)}}(\phi+\bar\phi)\right)^2
$$

which is complex valuable when $\alpha < 4$ and then Jordan frame metric is ill defined.

T Thus lower bound of α , and hence that of tensor-to-scalar ratio r, are key observable quantity to distinguish the model based on Jordan frame from other models which related by conformal transformation.

$$
r > 48/N^2, \qquad r > 12/N^2, \qquad r > 0
$$

Our model, FKLMP model, alpha attractor model

Summary

 \Box Our findings:

- Non-horomorphic extension of frame function is necessary to construct Inflation models beyond FKLMP. $\Phi(z,\bar{z}) = -3 + \delta_{\alpha\bar{\beta}} z^{\alpha} \bar{z}^{\bar{\beta}} + J(z,\bar{z})$
- We give one example of pole inflation model in J-sugra.

$$
\Phi = -3\left(1 + \sqrt{\frac{\tilde{\xi}}{6}}(\phi + \bar{\phi})\right)^2 \qquad \mathcal{K} = -12\left(1 + \frac{1}{2\tilde{\xi}}\right)\log\left(1 + \sqrt{\frac{\tilde{\xi}}{6}}\left(\phi + \bar{\phi}\right)\right) \qquad \qquad W = \lambda S\phi^{5+3/\tilde{\xi}}
$$

where inflaton has canonical kinetic term in Jordan frame. In this model r has lower bound: $r > 48/N^2$.

• Kinetic structure of our model and FKLMP model are equivalent with that of super symmetric α -attractor model with a lower bound of α , which comes from positivity of a conformal factor.

D Discussions:

- Is the log type Kahler potential natural ? Are there any preference from high energy theory?
- We use ad-hoc assumptions like $\Phi(\rho) \rightarrow -A\rho^{-2}$. Is there room to construct yet another pole inflation models based on J-sugra.