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Observation about Inflation

O Observation of CMB gives us much information about inflation!

* Curvature power spectrum: Py ~ 0(10719)

* Tensor to scalar ratio: r < 0.15

* Spectral |ndex: nS ~ 096 arXiv:1502.02114, Planck collaboration
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Basics of Slow Roll Inflation 1

O Simplest inflation model with canonical scalar field:

1 1
5= [ dey=g|3R- 502 - V()
O Inflation occurs when slow roll parameters are sufficiently small;

1 (V'\* Vv
— — (= l.n=—<«<1
€ 2(V)~<<,n <

O Slow-roll inflation gives predictions in terms of a potential

V

P =
¢ T 94x2¢’

ne =1+ 2n — 06€, r = 16¢€
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Basics of Slow Roll Inflation 2

O Predictions strongly depend on potential:

v

T 94n2e’

Pe

ns =1+ 2n — 6e, r = 16¢ €:%<1’>2

mn

O Example: power law potential V' (¢) = g¢",
Number of e-folding is given by

N(8) = log(ac/a(¢)) = /

Pe

¢ v 1
- AN — 2
dgbV’ 2?7,@

" ng and r can be represented by N as

_ 1 n—+ 2 ~dn
TIT RN TN

* This model is excluded from the observation.
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Pole Inflation

O pole inflation: inflation driven by the pole in kinetic term
Galante, Kallosh, Linde, Rosest (2015)

5= [ ey ER — KV = V(o

- Kinetic term has a pole:

K(p) = p— (14 0O(p))

- Potential is finite at pole:
V(p) = Vo(1—cp+O(p?))

O Ideas
In terms of canonically normalized field, potential is stretched near pole.

====) - Flat potential is realized!
* Predictions do not depend on the detail of potential!
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Prediction of pole inflation with p = 2

O Let us derive the prediction of pole inflation with p=2

L@,
s= [atevms|gr- s -vin| HO TR
: V(p) = Vo(l = cp+ O(p%))
e

s= [dtay=g| 3R 5(VoP -V

O By using the result of slow-roll inflation, we obtain
V ay _¢ 1 744 as 1 V” 1
NED) e ']7 - — = — —
2 N Vv N

at p— 0,0 > o0, N = o0

and D — V() 2N2 — _l T_S(LQ
T 24n2 gy 7 ” N’ N2

Predictions do not depend on the detail of potential and coincide with

observation with a, ~ 0(1) . (ng ~ 096 —»r ~a, x0.013)
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Pole inflation from Jordan frame

O /F fundamental physics prefer to Jorden frame,
it would be natural inflaton has the canonical kinetic term there.

This setting naturally leads to non-trivial kinetic term in Einstein frame!

1

L=+/~g; (f (p) R’ — 59 OupOup = VJ(P)>

97" = faly

1 v
So it would be possible to realize pole inflation in this frame work.

O We investigate this mechanism based on Jorden frame supergravity.
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Bosonic part of J-SUGRA

0 Action of bosonic part of Jordan frame super gravity (without gauge fields)

L 1 1 (I)aq)B 3
— _ v o _6
— = —E(I)RJ + (g@gaﬁ — T) 977020, 2
1 _ —
15 (Bad — 050,77) (250,27 — #50,2°) g ~ V)
O Dynamical variables; Yop = 0a0pK

. 1 2 K T af T
2% : complex scalar fields Vi=3®e (—3WW+9 VaWVﬁW)

giy : space time metric in Jordan frame VoW = 0, W + (0. K)W
b, =09,
O Arbitrary functions in theory;

* Khaler potential (2%, z°)
* Super potential TV (2%, z°)
* Frame function  ®(z%,Z
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Einstein Frame SUGRA

O Einstein frame SUGRA is obtained by conformal transformation of metric

fgj = —é(I)RJ + (%Q)gag — %) gg”auzaa,,zg
o (2002~ 50,2) (2,027~ 950,27 ) 5 — V.
l Gy = —%‘Pg,‘fy

O Frame function does not appear.

K(z%,2°) , W (2%, z°) : arbitrary function of Einstein frame SUGRA

d(2, 55) : Function to characterize Jordan frame

Daisuke Yoshida Pole Inflation in Jordan Frame Supergravity ( arXiv:1709.03440 )



FKLMP model

O Inflation model in Jordan frame super gravity.

S.Ferrara, R.Kallosh, A.Linde, A.Marrani, A. Van Proeyen (2010)

0 FKLMP model

K(z,z) = —3log (—%cb)

P(2,2) = -3+ 5a52a2[§ + J(2) + J(2)

Assuming fields configuration satisfies

L 1
—} = ——®R; —0,3¢9"0,270,2" =V
—q, 6 7 apdy Yp= Ovz J

Scalar fields have canonical kinetic terms !

O In original paper, author investigate Higgs inflation in the context of NMSSM.
Here we focus on simpler toy model than realistic Higgs inflation.
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FKLMP model with Single Scalar Field

O Let us focus on FKLMP model with single field: z% = ¢

O For simplicity we focus on following choice of J(¢):

10) =3 (5+¢) &

0 Now action reduces to simple form:

L 1 1

— =3 (1+8¢%) Ry = 595" 0updup = Vs
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FKLMP model as Pole Inflation

O ¢ model in Jordan frame:

L 1 1
=~ (1 NRy— =g470,00,p — V.
— 5 ( +&p ) J 29J nPOovP J

O ¢ model in Einstein frame g, = (1 +&%g1,
L 1 1 V;

—gg 2 2
Kinetic term has poleat 9 — 00 === poleatp = Owith p=(1+ Ep?)
1+ £p?) + 126%¢? 1 3\ (0p)?* p?
(1+&v%) fw(ay: 1.3 (m_+p
2(1 + &p?)? & 2) p*  p~?
O V;; does not diverge or vanish at pole if V; o« ¢*.
Pole inflation works well:

2 8 (1,3
ne=1-—, r=—\|—=+3
N N2 \4e " 2

Kp(p)(0p)? = 2
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Beyond FKLMP

O FKLMP approach

c, &, W q

 Canonical Kinetic terms in Jordan Frame
e Poleinflation

Is FKLMP model unique one which satisfy these 2 conditions?

O Our approach

e Canonical Kinetic terms in Jordan frame
 Pole inflation

q What conditions are imposed for [C, &, W 2
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Note: with FKLMP frame function

O Action of J-frame sugra:

L 1 1 (I)aq)é v o =
— —E(I)RJ + (§<I>ga5 — T) 94" 0,2%0,%"
1 N 5 y
- 1% (<I> 0,2 Baﬂzﬁ) (<I>,Yf9yz'7 — 950,z )g’j —Vy
O
* FKLMP frame function: $(z,z) = -3+ 5a5za25 +J(2) + J(2)
. . C . . 1 b, D5
canonical kinetic term: =005~ —= B _ ~005
1
) 5K = K + 3log (—§¢)
5Kup = 5K = h(2) + h(3)

This is nothing but Kahler transformation from FKLMP Kahler potential!

Non holomorphic extensions are necessary to obtain beyond FKLMP model.
B(2,2) = —3+08,52°%° + J(2,2)
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Our Frameworks

O We consider following class of arbitrary functions with 2 scalar fields:

K =K(¢+,SS,5%, 5%,
®=d(¢p+,99,5% 5%,
W =Sf(¢)

O Inflaton direction:

_p—=F ¢_Gd_

O Note: stabilizer field S is needed to ensure positivity of the potential;

B Kawasaki, Yamaguchi, Yanagida (2000)
Vi = (<30I + g™V WV,
\

Negative term vanishes at S=0

K _SS|r2
=e g |f| on inflaton trajectory
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Conditions for Pole Inflation

0 Our 3 conditions:

* Inflation and stabilizer fields have canonical kinetic term in Jorden frame:

D Dy P _3 (2
() 3
5985‘:_1 q 9552—6

* Kinetic term of inflaton in Einstein frame has pole structure:

305300V > —5 L (0p) 905 = ()

at p — 0 with some function p(¢)

* Inflaton potential in Einstein frame is smooth at the pole:

o
VE=—§GK|J€’2—>VO(1—CP+"‘)
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Strategy

O Differential equation,

3 (D (p)? O 2
g¢q3:5< (%) —1) 9pp — p' ()

!/ 2 _ _2@
—) (¢ (¢))? = 22 P2 — (9,)2

1. Assuming functional form of ®(p), solve above differential equation:

p=p(p) —} D = O(p)

2. Determine a Kahler potential through

3 (@' (p)? __3
gqqu:g( 5D — 1 9ss = P
3. Determine super potential f through
d
— SR f2 o Vo1 —cp+ )
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1.Solve differential equation

1. Assuming functional form of ®(p), solve differential equation:

* Assumingp = 2and ®(p) — —Ap 2 , our differential equation reduces to

, > _ —2® 2 &P ;_ 3
(P’ () %q}z —(0,0)? q pr=g A with &= az — 6

e Solutions can be written as

()=
P\P) = \/E(C+(’Q) with integration constant C

e Then frame function can be obtained as

2
<I>()——§C’2 ]—I——l 2——3 1+ g
7= O(’D B 3('0

Here integration constant is chosen as

g d 1
C = \/ 3/5 so that ng D fERJ = §RJ + nonminimal couplings
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2.Determine a Kahler potential

2. Determine a Kahler potential

3 (P (p)?
966 = 3 ( 5!

1
9ps = 0p0sK = 50,0,K(¢)
2
_ ¢
P(p) = —3 (1 + \/;go)

K =-—-12 (1 + i,,) 10g (1 + ggo) on inflaton trajectory
28

l b=¢
K=—-12 (1+2i£) log (1—|—\/§(gb—l—<§))

Note: here S dependence are omitted.

9
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3.Determine a super potential

3. Determine a super potential W = Sf(¢)

* Function f can be determined from the requirement

P
VE:—ge’C|f|2—>Vo(1—Cp—l—---) atp - 0

e Left hand side can be evaluated as

-\ -t
_ § 2
VeE=—1|1+ 3 ¥ /]

* In order for Vg to be constantat ¢ — oo (p — 0),

F(@) = Ap™ with m:5+§
3\™ 3(1 + 2€)
o (2 (1M, )
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Note: Consistency check

0 We assumed following two conditions;

e Stabilizer field also has canonical kinetic term in Jordan frame:

* Inflaton direction is Re ¢.

b6—G=5S=5=0

[0 These two conditions are satisfied if we includes S dependence in Kahler potential as

2
= — § b _Ligp| - 1 § ol DR
K =-3log (1+\/;(¢+qb)) 3|S| 6(1+g)log (1+\/;(¢+¢)) 4C|S|

2 ~

mIm 2(3"‘55) m2 ~

e =l > iy —vesa = (2"
inf L+ 2¢ inf = Vel _7<£)

m—) Masses of Im(¢) and S are sufficiently large!
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0 We have derived all arbitrary functions of Jordan frame supergravity;

®(p) = -3 (1 + \/é(cb + cb))

_ 1 (64 d
IC_—12(1+25)10% 1+ 6(¢+¢)

Omitting S dependence

3 .
W = AS¢™ with m=5+g m is integerif £=1or3
* Inflaton has canonical kinetic term in Jordan frame 1
e Pole inflation works well az = (1 + 25)
L 1 a o 3\"
LR %2 (0p) Vol = cp) - b= I 3z
—9gr 2 p
c=2m 30+ 20)




Prediction of our model

O From the general argument of pole inflation,

2 2602 m
neimd e B (L) po B (3)
N N 26 36m2(1 4 26) \ 26

0 Numerical calculations at leading order of N

0.100¢

0.050¢
----- ¢-model, N = 50

——— &-model, N = 60
————— ¢-model, N = 50
———— é-model, N = 60

0.010¢
0.005¢

Tensor-to-scalar ratior

0001 ........................
0.93 0.94 0.95 0.96 0.97 0.98

Spectral index ng

0 Our model has lower bound of r; r> 48/N2
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Relation with alpha attractor model

0 Sumper symmetric a attractor model: Cecotti, Kallosh (2014)
Inflation model based on Einstein frame sugra with free parameter & > 0 with

K =-3a log(T + T) omitting stabilizer field
12 _
—} r= ﬁa without lower bound

O Our (and FKLMP) model reduces to alpha attractor model in Einstein frame:

~

§

1 _
]C:—12<1+¥)10g 1+ 6(¢+¢)

Comparing the Kahler potential of a attractor model, we find

_ ! 1 £
=414+ — _ = S
“ ( 26) T_2+ 6¢

Now parameter a has lower bound: @ > 4, which corresponds to r > 48/N?.

O Note: super potential is different in each theory and prediction is not equivalent at subleading order.
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O If we start from «a attractor model in Einstein frame, any positive value of a should be
allowed.

Then where does our constraint « > 4 come from?

O It is clear from the frame function (= the conformal factor ) in our Jordan frame.

2
1 _
¢ =-3 (1+ m(¢+¢)>

which is complex valuable when a < 4 and then Jordan frame metric is ill defined.

O Thus lower bound of a ,and hence that of tensor-to-scalar ratio r, are key observable
quantity to distinguish the model based on Jordan frame from other models which
related by conformal transformation.

r>48/N? r>12/N* r>0

Our model, FKLMP model, alpha attractor model






O Our findings:

Non-horomorphic extension of frame function is necessary to construct
Inflation models beyond FKLMP. D(z,2) = =3+ 0,52°2" + J(2,%)

We give one example of pole inflation model in J-sugra.

o =-3 (1—1— \/g(qﬁ—b—(p)) K=-12 (1 + Qié) log (l + \/g (gb—|— q_))) W = AS®5+3/5

where inflaton has canonical kinetic term in Jordan frame.
In this model r has lower bound: r > 48/N?2.

Kinetic structure of our model and FKLMP model are equivalent with that
of super symmetric a-attractor model with a lower bound of «, which
comes from positivity of a conformal factor.

O Discussions:

Is the log type Kahler potential natural ? Are there any preference from
high energy theory?

We use ad-hoc assumptions like @®(p) -+ —Ap~2. Is there room to construct
yet another pole inflation models based on J-sugra.



