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Introduction Motivation

Motivation

I Goal: Completely classify the space of unitary Conformal Field
Theories in two dimensions

I In two dimensions the algebra of local conformal symmetries is
infinite dimensional

I Rational theories with c < 1 have been classified

I Irrational theories with c > 1 still open work

I This talk: what happens if we add higher spin symmetries
generated by currents of spin s > 2
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Introduction Motivation

Current Standing of Higher Spin CFTs

I For d > 2 the constraints on higher spin symmetry are quite
powerful

I At d = 3, a theory with a conserved current of spin s > 2 must
have an infinite tower of higher spin currents [Maldacena and
Zhiboedov 1112.1016]

I Result has been extended for d > 3 [Boulanger et al. 1305.5180,
Alba and Diab 1510.02535]

I In d = 2 adding higher spin currents give a W algebra
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Introduction Virasoro

Virasoro

I The symmetry algebra of a two dimensional conformal field theory
is the Virasoro algebra

I The algebra is given by

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm+n,0

I Energy eigenstates (eigenstates of L0) will fall into representations
of Virasoro
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Introduction Virasoro

Representations of Virasoro

I Construct highest weight representation of Virasoro algebra,
analogous to su(2) in QM

I Have a highest weight vector, |h〉, which is eigenvector of L0

I Ln (n > 0) act as lowering operators, [L0, Ln] = −nLn

L0 |h〉 = h |h〉 , Ln |h〉 = 0, n > 0

I Other states are obtain by acting with L−n, n > 0

I Take as basis

{L−k1L−k2 ...L−kn |h〉}, 1 ≤ k1 ≤ k2 ≤ ... ≤ kn

I State has level N if it’s L0 eigenvalue is h+N

I E.g. L−1L−2 |h〉 has level 3, in general N =
∑

i ki
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Introduction W algebras

W Algebras

I Extend Virasoro algebra with additional higher spin primary fields

I Expand the primary fields in terms of modes

W (z) =
∑
k

Wkz
−k−h

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm+n,0

[Lm,Wn] =
(
(h− 1)m− n

)
Wm+n

[Wm,Wn] = ...

I Demand the algebra closes with the specified fields
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Introduction W algebras

Example W3

I Add a single spin 3 current, which we will denote with W

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0

[Lm,Wn] =
(
2m− n

)
Wm+n

[Wm,Wn] = p(m,n)Lm+n + q(m,n)CΛ
WWΛm+n

+
c

360
m(m2 − 1)(m2 − 4)δm+n,0

Λn =
∑
p≤−2

LpLn−p +
∑
p≥−1

Ln−pLp −
3

10
(n+ 2)(n+ 3)Ln
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Introduction W algebras

W Algebras

I Notation: A W algebra with primaries of spin s1, ..., sn is denoted
W(2, s1, ..., sn)

I Specifying spins is not enough to uniquely determine the algebra
I May not exist or may only be valid for certain values of central

charge
I May be more than one algebra with the same set of primaries

I We will focus on WN algebras which correspond to W(2, 3, ..., N)

I For WN there is a unique algebra valid for generic values of c

I Analogue of minimal models for WN have c < N − 1

I We will be concerned with the irrational regime, c > N − 1
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Introduction W algebras

Representation of WN Algebras

I Works largely the same way as that of Virasoro

I Now have N − 1 eigenvalues to describe the primary states

|h, q3, ..., qN 〉

L0 |h, q3, ..., qN 〉 = h |h, q3, ..., qN 〉

W s
0 = qs |h, q3, ..., qN 〉 , s = 3, 4, ..., N

I States annihilated by lowering operators of all fields

Lk |h, q3, ..., qN 〉 = 0 = W s
k |h, q3, ..., qN 〉 k > 0
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Introduction W algebras

Example W3

I Once again denote the spin 3 field as W
I The highest weight representation is given by |h, q3〉 where

L0 |h, q3〉 = h |h, q3〉 , W0 |h, q3〉 = q3 |h, q3〉 ,
Lk |h, q3〉 = 0 = Wk |h, q3〉 , k > 0

I Basis of states

{L−k1 ...L−knW−`1 ...W−`m |h, q3〉}
1 ≤ k1 ≤ ... ≤ kn, 1 ≤ `1 ≤ ... ≤ `m

I Once again the level is given by the eigenvalue of L0 and is given
by

N =
∑
i

ki +
∑
j

`j
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Constraints from Unitarity by Explicit Calculation

The general procedure

I Now want to use unitarity to constrain the representations

I Given a basis of states |i〉 we construct the matrix

Mij = 〈i|j〉

I The norm of any state is expressible in terms of this matrix,

|X〉 =
∑
i

Xi |i〉 ⇒ 〈X|X〉 =
∑
i,j

X∗
iMijXj

I The matrix M is Hermitian and can be diagonalized

〈X|X〉 =
∑
i

λi|Yi|2

I To exclude negative norm states we must then have all eigenvalues
of M to be non-negative
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Constraints from Unitarity by Explicit Calculation

Virasoro

I Use highest weight representation

I The matrix M is known as the Kac matrix

I States with different level are orthogonal

I At level 1 only have one state: L−1 |h〉

〈h|L1L−1 |h〉 = 2h

I State is unitary for h ≥ 0

I No new constraints at higher level for c ≥ 1

I For 0 < c < 1 higher levels do give constraints and leads to the
classification of minimal models
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Constraints from Unitarity by Explicit Calculation

W3

I Use highest weight representation

I States with different level are still orthogonal

I Now have two states at level 1:

|1〉 ≡ L−1 |h, q3〉 , |2〉 ≡W−1 |h, q3〉

I Result:

M =

(
〈1|1〉 〈1|2〉
〈2|1〉 〈2|2〉

)
=

(
2h 3q3

3q3
h(2−c+32h)

22+5c

)
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Constraints from Unitarity by Explicit Calculation

W3
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I Figure is exclusion plot
at c = 10000 (shaded
region allowed)

I Lower bound on h as a
function of q3 (and c)

I Overall lower bound

h ≥ 1

32
(c− 2)

15 / 25



Constraints from Unitarity by Explicit Calculation

W4
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I At fixed central charge
have three parameters:
h, q3, q4

I Figure is exclusion plot
at c = 10000 and q3 = 0

I Overall lower bound on
positive norm states

h >
1

30
(c− 3)

I Have null states that
exist below this bound
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Constraints from Unitarity by Explicit Calculation

Summary of Explicit Results

I Possible to continue the procedure for N = 5, 6 as well

W2 : h > 0

W3 : h >
1

32
(c− 2)

W4 : h >
1

30
(c− 3)

W5 : h >
3

80
(c− 4)

W6 : h >
4

105
(c− 5)

I Bound is always of the form

h > #
(
c− (N − 1)

)
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Structure of Null States

Structure of Null States

I Want to figure out how this bound works for general N

I Algebra becomes more complicated as N is increased

I N ranges over all integers ≥ 2

I Idea: use the fact that boundary of the regions we are looking at
correspond to intersections of null states
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Structure of Null States

Structure of Null States

I Much like Virasoro, the determinant of the Kac matrix is known
level by level for WN algebras

I Determinant is expressed in terms of N − 1 parameters Li

I Charges (including h) are polynomial in the Li

I The determinant vanishes for null states

I The regions of positive norm are bounded by null states

I The bounds we have found occur at intersections of null states
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Structure of Null States

Example W3

I The level one determinant is expressed in terms of two parameters
L1, L2:

M (1) ∝ L1L2(6L1 −
√

6(c− 2))(6L2 −
√

6(c− 2))×

(4L1 + 4L2 −
√

6(c− 2))(12L1 + 12L2 −
√

6(c− 2))

h = Second order polynomial(L1, L2)

q3 = Third order polynomial(L1, L2)

I Fix L2 such that M (1) vanishes, then extremize h with respect to
L1

hcrit =
1

32
(c− 2)
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Structure of Null States

General WN

I For WN everything now depends on L1, L2, ..., LN−1

I Set some combination of Li to values that make the determinant
vanish, then maximize over the remaining L’s

I When matching with the explicit results already obtained, a
pattern emerges for which Li to fix

I Conjecture that the pattern holds for higher values of N

I Result differs for even and odd N but is expressible as

h ≥ c− (N − 1)

24

(
1− 6

N(N2 − 1)

⌊
N

2

⌋)
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Interpretation in AdS/CFT

Spectrum of CFTs with Gravitational Duals

I For a holographic CFT with semiclassical dual we need to take
c→∞ with N fixed

I In a holographic dual h is related to the mass of the corresponding
state

I Heavy states have h which scales with the central charge

Black Holes h ≥ c

24

Other Heavy Particles h = αc, α <
1

24

I Light states

h finite as c→∞

22 / 25



Interpretation in AdS/CFT

Implication of the Results

I For WN the constraint is h ≥ #(c−N + 1)

I Linearity in c implies that there can be no light states in a
holographic CFT

I Can only be dual to pure theories of gravity

I Agrees with other analysis [1602.08272 Perlmutter]
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Conclusion

Other Constraints

I Can look at higher level Kac matrix

I Charged modular bootstrap

Tr
(
W 2

0 q
L0−c/24q̄L̄0−c̄/24

)
I Explicitly done for W3, yields new constraints but no

contradictions
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Conclusion

Conclusion

I Examined positivity of Kac matrix to derive constraints on
spectrum of WN theories

I States satisfy

h ≥ c− (N − 1)

24

(
1− 6

N(N2 − 1)

⌊
N

2

⌋)
I Holographically these WN theories are dual to pure theories of

gravity
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