Constraints on Higher Spin CFT²

Kale Colville

McGill University Hep-th Journal Club

Based on:

1707.07717 with N. Afkhami-Jeddi, T. Hartman, E. Perlmutter, and A. Maloney

February 7, 2018

[Introduction](#page-2-0) [Motivation](#page-2-0) [Virasoro](#page-4-0) W [algebras](#page-6-0)

[Constraints from Unitarity by Explicit Calculation](#page-11-0)

[Structure of Null States](#page-17-0)

[Interpretation in AdS/CFT](#page-21-0)

Motivation

- ^I Goal: Completely classify the space of unitary Conformal Field Theories in two dimensions
- \triangleright In two dimensions the algebra of local conformal symmetries is infinite dimensional
- \blacktriangleright Rational theories with $c < 1$ have been classified
- Irrational theories with $c > 1$ still open work
- \triangleright This talk: what happens if we add higher spin symmetries generated by currents of spin $s > 2$

Current Standing of Higher Spin CFTs

- \triangleright For $d > 2$ the constraints on higher spin symmetry are quite powerful
- \triangleright At $d = 3$, a theory with a conserved current of spin $s > 2$ must have an infinite tower of higher spin currents [Maldacena and Zhiboedov 1112.1016]
- Result has been extended for $d > 3$ [Boulanger et al. 1305.5180, Alba and Diab 1510.02535]
- In $d = 2$ adding higher spin currents give a W algebra

Virasoro

- \triangleright The symmetry algebra of a two dimensional conformal field theory is the Virasoro algebra
- \blacktriangleright The algebra is given by

$$
[L_m, L_n] = (m - n)L_{m+n} + \frac{c}{12}(m^3 - m)\delta_{m+n,0}
$$

Energy eigenstates (eigenstates of L_0) will fall into representations of Virasoro

Representations of Virasoro

- \triangleright Construct highest weight representation of Virasoro algebra, analogous to $\mathfrak{su}(2)$ in QM
- In Have a highest weight vector, $|h\rangle$, which is eigenvector of L_0

\n- $$
L_n
$$
 $(n > 0)$ act as lowering operators, $[L_0, L_n] = -nL_n$
\n- $L_0 |h\rangle = h |h\rangle$, $L_n |h\rangle = 0, n > 0$
\n

- \triangleright Other states are obtain by acting with L_{-n} , $n > 0$
- Take as basis

$$
\{L_{-k_1}L_{-k_2}...L_{-k_n} |h\rangle\}, \qquad 1 \le k_1 \le k_2 \le \dots \le k_n
$$

- State has level N if it's L_0 eigenvalue is $h + N$
- ► E.g. $L_{-1}L_{-2} |h\rangle$ has level 3, in general $N = \sum_i k_i$

W Algebras

- \triangleright Extend Virasoro algebra with additional higher spin primary fields
- \triangleright Expand the primary fields in terms of modes

$$
W(z) = \sum_{k} W_k z^{-k-h}
$$

$$
[L_m, L_n] = (m - n)L_{m+n} + \frac{c}{12}(m^3 - m)\delta_{m+n,0}
$$

$$
[L_m, W_n] = ((h - 1)m - n)W_{m+n}
$$

$$
[W_m, W_n] = \dots
$$

 \triangleright Demand the algebra closes with the specified fields

Example \mathcal{W}_3

 \blacktriangleright Add a single spin 3 current, which we will denote with W

$$
[L_m, L_n] = (m - n)L_{m+n} + \frac{c}{12}m(m^2 - 1)\delta_{m+n,0}
$$

$$
[L_m, W_n] = (2m - n)W_{m+n}
$$

$$
[W_m, W_n] = p(m, n)L_{m+n} + q(m, n)C_{WW}^{\Lambda} \Lambda_{m+n} + \frac{c}{360}m(m^2 - 1)(m^2 - 4)\delta_{m+n,0}
$$

$$
\Lambda_n = \sum_{p \le -2} L_p L_{n-p} + \sum_{p \ge -1} L_{n-p} L_p - \frac{3}{10} (n+2)(n+3) L_n
$$

 W Algebras

- \triangleright Notation: A W algebra with primaries of spin $s_1, ..., s_n$ is denoted $W(2, s_1, ..., s_n)$
- \triangleright Specifying spins is not enough to uniquely determine the algebra
	- \triangleright May not exist or may only be valid for certain values of central charge
	- \triangleright May be more than one algebra with the same set of primaries
- \blacktriangleright We will focus on \mathcal{W}_N algebras which correspond to $\mathcal{W}(2, 3, ..., N)$
- \triangleright For \mathcal{W}_N there is a unique algebra valid for generic values of c
- Analogue of minimal models for W_N have $c < N 1$
- \triangleright We will be concerned with the irrational regime, $c > N 1$

Representation of \mathcal{W}_{N} Algebras

- ► Works largely the same way as that of Virasoro
- \triangleright Now have $N-1$ eigenvalues to describe the primary states

$$
|h, q_3, ..., q_N\rangle
$$

\n $L_0 | h, q_3, ..., q_N\rangle = h | h, q_3, ..., q_N\rangle$
\n $W_0^s = q_s | h, q_3, ..., q_N\rangle$, $s = 3, 4, ..., N$

 \triangleright States annihilated by lowering operators of all fields $L_k | h, q_3, ..., q_N \rangle = 0 = W_k^s | h, q_3, ..., q_N \rangle$ $k > 0$

Example \mathcal{W}_3

- \triangleright Once again denote the spin 3 field as W
- In The highest weight representation is given by $|h, q_3\rangle$ where

$$
L_0 | h, q_3 \rangle = h | h, q_3 \rangle, \qquad W_0 | h, q_3 \rangle = q_3 | h, q_3 \rangle,
$$

$$
L_k | h, q_3 \rangle = 0 = W_k | h, q_3 \rangle, \qquad k > 0
$$

 \triangleright Basis of states

$$
\{L_{-k_1} \dots L_{-k_n} W_{-\ell_1} \dots W_{-\ell_m} | h, q_3 \rangle \}
$$

$$
1 \le k_1 \le \dots \le k_n, \qquad 1 \le \ell_1 \le \dots \le \ell_m
$$

 \triangleright Once again the level is given by the eigenvalue of L_0 and is given by

$$
N = \sum_i k_i + \sum_j \ell_j
$$

The general procedure

- \triangleright Now want to use unitarity to constrain the representations
- \triangleright Given a basis of states $|i\rangle$ we construct the matrix

$$
M_{ij}=\langle i|j\rangle
$$

- \triangleright The norm of any state is expressible in terms of this matrix, $|X\rangle = \sum$ i $X_i|i\rangle \quad \Rightarrow \quad \langle X|X\rangle = \sum$ $_{i,j}$ $X_i^* M_{ij} X_j$
- \blacktriangleright The matrix M is Hermitian and can be diagonalized

$$
\langle X|X\rangle = \sum_i \lambda_i |Y_i|^2
$$

 \triangleright To exclude negative norm states we must then have all eigenvalues of M to be non-negative

Virasoro

- \triangleright Use highest weight representation
- \triangleright The matrix M is known as the Kac matrix
- \triangleright States with different level are orthogonal
- At level 1 only have one state: $L_{-1} |h\rangle$

$$
\langle h | L_1 L_{-1} | h \rangle = 2h
$$

- In State is unitary for $h \geq 0$
- \triangleright No new constraints at higher level for $c \geq 1$
- If For $0 < c < 1$ higher levels do give constraints and leads to the classification of minimal models

 \mathcal{W}_3

- \triangleright Use highest weight representation
- \triangleright States with different level are still orthogonal
- \triangleright Now have two states at level 1:

$$
\left|1\right\rangle \equiv L_{-1}\left|h,q_3\right\rangle, \hspace{1cm} \left|2\right\rangle \equiv W_{-1}\left|h,q_3\right\rangle
$$

 \blacktriangleright Result:

$$
M = \begin{pmatrix} \langle 1|1 \rangle & \langle 1|2 \rangle \\ \langle 2|1 \rangle & \langle 2|2 \rangle \end{pmatrix} = \begin{pmatrix} 2h & 3q_3 \\ 3q_3 & \frac{h(2-c+32h)}{22+5c} \end{pmatrix}
$$

 \mathcal{W}_3

 \mathcal{W}_4

- \triangleright At fixed central charge have three parameters: h, q_3, q_4
- \blacktriangleright Figure is exclusion plot at $c = 10000$ and $q_3 = 0$
- \triangleright Overall lower bound on positive norm states

$$
h > \frac{1}{30}(c-3)
$$

 \blacktriangleright Have null states that exist below this bound

Summary of Explicit Results

 \blacktriangleright Possible to continue the procedure for $N = 5, 6$ as well

$$
\mathcal{W}_2: \quad h > 0
$$
\n
$$
\mathcal{W}_3: \quad h > \frac{1}{32}(c-2)
$$
\n
$$
\mathcal{W}_4: \quad h > \frac{1}{30}(c-3)
$$
\n
$$
\mathcal{W}_5: \quad h > \frac{3}{80}(c-4)
$$
\n
$$
\mathcal{W}_6: \quad h > \frac{4}{105}(c-5)
$$

► Bound is always of the form

$$
h > \# \big(c - (N - 1)\big)
$$

Structure of Null States

- \triangleright Want to figure out how this bound works for general N
- \blacktriangleright Algebra becomes more complicated as N is increased
- \triangleright N ranges over all integers ≥ 2
- \triangleright Idea: use the fact that boundary of the regions we are looking at correspond to intersections of null states

Structure of Null States

- \triangleright Much like Virasoro, the determinant of the Kac matrix is known level by level for W_N algebras
- \triangleright Determinant is expressed in terms of $N-1$ parameters L_i
- \triangleright Charges (including h) are polynomial in the L_i
- The determinant vanishes for null states
- \triangleright The regions of positive norm are bounded by null states
- ^I The bounds we have found occur at intersections of null states

Example \mathcal{W}_3

 \triangleright The level one determinant is expressed in terms of two parameters L_1, L_2 :

$$
M^{(1)} \propto L_1 L_2 (6L_1 - \sqrt{6(c-2)})(6L_2 - \sqrt{6(c-2)}) \times
$$

\n
$$
(4L_1 + 4L_2 - \sqrt{6(c-2)})(12L_1 + 12L_2 - \sqrt{6(c-2)})
$$

\n
$$
h = \text{Second order polynomial}(L_1, L_2)
$$

\n
$$
q_3 = \text{Third order polynomial}(L_1, L_2)
$$

Fix L_2 such that $M^{(1)}$ vanishes, then extremize h with respect to L_1

$$
h_{\rm crit} = \frac{1}{32}(c-2)
$$

General \mathcal{W}_N

- ► For W_N everything now depends on $L_1, L_2, ..., L_{N-1}$
- \triangleright Set some combination of L_i to values that make the determinant vanish, then maximize over the remaining L 's
- \triangleright When matching with the explicit results already obtained, a pattern emerges for which L_i to fix
- \triangleright Conjecture that the pattern holds for higher values of N
- \triangleright Result differs for even and odd N but is expressible as

$$
h \ge \frac{c - (N-1)}{24} \left(1 - \frac{6}{N(N^2 - 1)} \left\lfloor \frac{N}{2} \right\rfloor \right)
$$

Spectrum of CFTs with Gravitational Duals

- \triangleright For a holographic CFT with semiclassical dual we need to take $c \to \infty$ with N fixed
- In a holographic dual h is related to the mass of the corresponding state

c

 \blacktriangleright Heavy states have h which scales with the central charge

Black Holes

\n
$$
h \geq \frac{c}{24}
$$
\nOther Heavy Particles

\n
$$
h = \alpha c, \quad \alpha < \frac{1}{24}
$$

 \blacktriangleright Light states

h finite as $c \to \infty$

Implication of the Results

- ► For W_N the constraint is $h \geq \#(c N + 1)$
- Inearity in c implies that there can be no light states in a holographic CFT
- \triangleright Can only be dual to pure theories of gravity
- \triangleright Agrees with other analysis [1602.08272 Perlmutter]

Other Constraints

- \triangleright Can look at higher level Kac matrix
- \blacktriangleright Charged modular bootstrap

$$
\text{Tr}\left(W_0^2 q^{L_0-c/24} \bar{q}^{\bar{L}_0-\bar{c}/24}\right)
$$

Explicitly done for \mathcal{W}_3 , yields new constraints but no contradictions

Conclusion

- ► Examined positivity of Kac matrix to derive constraints on spectrum of \mathcal{W}_N theories
- \triangleright States satisfy

$$
h \ge \frac{c - (N - 1)}{24} \left(1 - \frac{6}{N(N^2 - 1)} \left\lfloor \frac{N}{2} \right\rfloor \right)
$$

 \blacktriangleright Holographically these \mathcal{W}_N theories are dual to pure theories of gravity