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IBiaveTeiteinteliill  Motivation

Motivation

» Goal: Completely classify the space of unitary Conformal Field
Theories in two dimensions

» In two dimensions the algebra of local conformal symmetries is
infinite dimensional

» Rational theories with ¢ < 1 have been classified
» Irrational theories with ¢ > 1 still open work

» This talk: what happens if we add higher spin symmetries
generated by currents of spin s > 2



Rstnatic
Current Standing of Higher Spin CFTs

» For d > 2 the constraints on higher spin symmetry are quite
powerful
» At d = 3, a theory with a conserved current of spin s > 2 must

have an infinite tower of higher spin currents [Maldacena and
Zhiboedov 1112.1016]

» Result has been extended for d > 3 [Boulanger et al. 1305.5180,
Alba and Diab 1510.02535]

» In d = 2 adding higher spin currents give a W algebra



Introduction FAVSTEEIe e

Virasoro

» The symmetry algebra of a two dimensional conformal field theory
is the Virasoro algebra

» The algebra is given by

C
[Lm7 Ln] = (m — n)Lm+n —+ E(mg — m)5m+n,0

» Energy eigenstates (eigenstates of Lg) will fall into representations
of Virasoro



Introduction FAVSTEEIe e

Representations of Virasoro

» Construct highest weight representation of Virasoro algebra,
analogous to su(2) in QM

» Have a highest weight vector, |h), which is eigenvector of Lg

» L, (n>0) act as lowering operators, [Lg, L,] = —nL,

Lolh) = h|h),  Lnlh) =0,n>0

» Other states are obtain by acting with L_,,, n > 0
» Take as basis
{L,le,kQ...L,kn |h>}, 1<k <k <..<k,

> State has level N if it’s Ly eigenvalue is h + N
» E.g. L_1L_5|h) has level 3, in general N =) k;
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LOG R
W Algebras

» Extend Virasoro algebra with additional higher spin primary fields

» Expand the primary fields in terms of modes
W(z) =Y Wiz "
k

c
[Lin, L) = (m —n)Lpgn + E(m?’ — M) dm4n,0

(L, Wa] = (b= 1)m — n)Wyqm
(Wi, Wa] = ...

» Demand the algebra closes with the specified fields



LOG R
Example W3

» Add a single spin 3 current, which we will denote with W

c
[Lim, Lp] = (m —n)Lyqn + 3

(L, Wa] = (2m — n) Wi n

m(m2 - 1)5m+n,0

[Wm7 Wn] = p(ma n)Lm—i-n + Q(ma n)CI//I\/WAm—l-n

C 2
1 —4 m+n
+ 360 m(m ) ( )5 0

3
A=Y LpLnp+ > Lnply— 1o+ 2)(n+3)Ln
p<—2 p>—1



LOG R
W Algebras

v

Notation: A W algebra with primaries of spin s, ..., s, is denoted
W(27 81500y Sn)
Specifying spins is not enough to uniquely determine the algebra

v

» May not exist or may only be valid for certain values of central
charge
» May be more than one algebra with the same set of primaries

We will focus on Wy algebras which correspond to W(2,3, ..., N)

v

v

For Wy there is a unique algebra valid for generic values of ¢

v

Analogue of minimal models for Wy have ¢ < N — 1

v

We will be concerned with the irrational regime, ¢ > N — 1



LOG R
Representation of Wy Algebras

» Works largely the same way as that of Virasoro

» Now have N — 1 eigenvalues to describe the primary states
’h7 g3, -+ QN>

LO |h7€I3, an> =h |h’a g3, 7(1N>
W(‘)S:qslth3?"'>QN>7 82374a"'7N

» States annihilated by lowering operators of all fields
Ly |h,qs,...qn) = 0 =W lh,g3,....qn) k>0
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LOG R
Example W3

» Once again denote the spin 3 field as W
» The highest weight representation is given by |h, g3) where

L0|h,Q3> :h‘h7Q3>7 WO’h7Q3> ZQ3’h7Q3>7
Ly |h,q3) = 0= Wy |h,q3) , k>0

» Basis of states
{Lky L, Wt - Wy, |1y a3)}
1<k <. Z ky, 1< <. <Un

» Once again the level is given by the eigenvalue of Ly and is given

by
N = E k; + E ﬁj
i J
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Constraints from Unitarity by Explicit Calculation

The general procedure

» Now want to use unitarity to constrain the representations

» Given a basis of states |i) we construct the matrix

M;; = (ilj)

» The norm of any state is expressible in terms of this matrix,

= ZX,-M) = (X|X)= ZX{kMinj
i iy

» The matrix M is Hermitian and can be diagonalized
(X|X) = Z Ai|Y;)2

» To exclude negative norm states we must then have all eigenvalues
of M to be non-negative



Constraints from Unitarity by Explicit Calculation

Virasoro

» Use highest weight representation
» The matrix M is known as the Kac matrix
» States with different level are orthogonal

» At level 1 only have one state: L_j |h)
(h| L1L_1|h) =2h

» State is unitary for h > 0
» No new constraints at higher level for ¢ > 1

» For 0 < ¢ < 1 higher levels do give constraints and leads to the
classification of minimal models
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Constraints from Unitarity by Explicit Calculation

v

Use highest weight representation

» States with different level are still orthogonal
» Now have two states at level 1:

1) = L_q1|h,q3), 12) = W_1|h,q3)
» Result:

Cam (2 Bm
M= < (2/1) (2)2) > - ( 3gs MEerih) >
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Constraints from Unitarity by Explicit Calculation

400t ]

» Figure is exclusion plot
300+ 1 at ¢ = 10000 (shaded
region allowed)

<

» Lower bound on h as a

200+

function of g3 (and c)

» Overall lower bound

100+ B > 1 5

Z 3—2(0 —-2)
0 L ) ) ) ) ) -
-40 -20 0 20 40
°k}
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Constraints from Unitarity by Explicit Calculation

600
500l > At fixed central charge
have three parameters:
4001 i h7 43,44
» Figure is exclusion plot
< 300 ] at c = 10000 and q3 = O
» Overall lower bound on
200 1 positive norm states
1
h>—(c—3
100} 1 30( )
OF, ‘ ‘ ‘ R » Have null states that
-10 -5 0 5 10

exist below this bound
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Constraints from Unitarity by Explicit Calculation

Summary of Explicit Results

» Possible to continue the procedure for N = 5,6 as well

Ws - h>0

Wi h>%(c—2)
Wi h>%(c—3)
Wi h>%(c—4)
W h>%(c—5)

» Bound is always of the form

h>#(c—(N—1))



Structure of Null States

Structure of Null States

v

Want to figure out how this bound works for general N

v

Algebra becomes more complicated as N is increased

» N ranges over all integers > 2

v

Idea: use the fact that boundary of the regions we are looking at
correspond to intersections of null states
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Structure of Null States

Structure of Null States

» Much like Virasoro, the determinant of the Kac matrix is known
level by level for Wy algebras

» Determinant is expressed in terms of N — 1 parameters L;
» Charges (including h) are polynomial in the L;

» The determinant vanishes for null states

» The regions of positive norm are bounded by null states

» The bounds we have found occur at intersections of null states
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Structure of Null States

Example W3

» The level one determinant is expressed in terms of two parameters
Ll, LQI

MW o LiLy(6L; — \/6(c —2))(6Ly — 1/6(c — 2)) x
(4L1 +4L2 — \/6(c —2))(12L1 + 12Ly — 1/6(c — 2))
h = Second order polynomial(L1, L)
g3 = Third order polynomial(L;, L2)

» Fix Ly such that M) vanishes, then extremize h with respect to
Ly

1
hcrit = 372(0 - 2)
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Structure of Null States

General Wy

» For Wy everything now depends on Ly, Lo, ..., Ly_1

» Set some combination of L; to values that make the determinant
vanish, then maximize over the remaining L’s

» When matching with the explicit results already obtained, a
pattern emerges for which L; to fix

» Conjecture that the pattern holds for higher values of NV

» Result differs for even and odd N but is expressible as

= (e )

V)

N



Interpretation in AdS/CFT

Spectrum of CFTs with Gravitational Duals

» For a holographic CFT with semiclassical dual we need to take
¢ — oo with N fixed

» In a holographic dual h is related to the mass of the corresponding
state

» Heavy states have h which scales with the central charge
c

Black Holes h > —

24
Other Heavy Particles h=ac, a< 21

» Light states

h finite as ¢ — oo

N
N
N



Interpretation in AdS/CFT

Implication of the Results

v

For Wy the constraint is h > #(c — N + 1)

Linearity in ¢ implies that there can be no light states in a
holographic CFT

Can only be dual to pure theories of gravity
Agrees with other analysis [1602.08272 Perlmutter]

v
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Conclusion

Other Constraints

» Can look at higher level Kac matrix

» Charged modular bootstrap
Tr (Woquo—c/24qE0—a/24)

» Explicitly done for Wi, yields new constraints but no
contradictions



Conclusion

Conclusion

» Examined positivity of Kac matrix to derive constraints on
spectrum of Wy theories

» States satisfy

o (1—N(N§_1) VZD

» Holographically these Wy theories are dual to pure theories of
gravity

h> ¢
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