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General idea

Hyphotesis:

• Chameleon field as the inflaton

• There is some non-relativistic matter at the time of inflation

Question:

• What happens with ns and r?
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Chameleon field: Short review



Chameleon field: Short review

Chameleon fields are scalar fields whose coupling to matter is such that

its effective mass depends on the local matter density1.

S = Sinf [gµν , ϕ] +

∫
d4√−gLm(g̃µν , ψ) (1)

with2

g̃µν = F 2(ϕ)gµν , F (ϕ) = ecϕ/MPl . (2)

If we vary it w.r.t. ϕ, we get

�ϕ = −dV

dϕ
− dF

dϕ
ρm = −dVeff

dϕ
. (3)

where

Veff(φ) = V (φ) + F (φ)ρ. (4)

1Khoury and Weltman 2004a,b.
2Hinterbichler et al. 2013.
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Conformal inflation



Conformal inflation: short review

Consider3

S =
1

2

∫
d4x
√
−g
[
∂µχ∂

µχ− ∂µφ∂µφ+
χ2 − φ2

6
R − λ

18
(φ2 − χ2)2

]
.

(5)

It is invariant under4

gµν → e−2σ(x)gµν ; χ→ eσ(x)χ, φ→ eσ(x)φ. (6)

Fixing the gauge

χ =
√

6MPl cosh
ϕ√

6MPl

; φ =
√

6MPl sinh
ϕ√

6MPl

. (7)

We get

S =

∫
d4x
√
−g
[
M2

Pl

2
R − 1

2
∂µϕ∂

µϕ− λM4
Pl

]
. (8)

3Bars, Steinhardt, and Turok 2013; Kallosh and Linde 2013.
4It is also invariant under global SO(1, 1).
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Conformal inflation: propaganda

To have inflation we deform the SO(1, 1) symmetry keeping the local

conformal invariance5

V = λf (φ/χ)
[
φ2 − g(φ/χ)χ2

]2
. (9)

Choosing f (x) = 1 and

g(x) = ω2 + (1− ω2)xn , (10)

we can have the Higgs potential at low ϕ values and inflation when

ϕ→∞.

5RC and H. Nastase 2014
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Conformal inflation: general feature

At ϕ→∞,

V (ϕ) ' V0

[
1− Be

−
√

2
3

ϕ
MPl

]
. (11)

which implies

1− ns ' 2

Ne

r ' 3(ns − 1)2 ' 12

N2
e

. (12)

For 50 e-folds, ns = 0.9600, while for 60 e-folds ns = 0.9667.
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Sweet spot
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Attractors



Modified KG equation

At the time of inflation we have

ρX = F (ϕ)ρm =
F (ϕ)ρm0a

3
0

a3
∝ e−3NF (ϕ). (13)

and radiation scales as

ρrad =
ρrad,0a

4
0

a4
∝ e−4N . (14)

In terms of N = ln a, the KG becomes

H2 d
2ϕ

dN2
+

1

3M2
Pl

(
3

2
ρX + ρrad + 3V

)
dϕ

dN
= −ρX

F

dF

dϕ
− dV

dϕ
= −dVeff

dϕ
,

(15)
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Attractors

Since

F (ϕ) = ecϕ (16)

and

ρX = F (ϕ)ρm =
F (ϕ)ρm0a

3
0

a3
∝ e−3Necϕ, (17)

If we find ϕ = ϕi + kN, it implies

ρX ∼ const. (18)

if k = 3/c .
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Friedmann and Modified KG equations

Defining

ΩX ≡
ρX

3H2M2
Pl

; Ωrad ≡
ρrad

3H2M2
Pl

; Ωkin,ϕ ≡
ϕ′2

6M2
Pl

, ΩV ≡
V

3H2M2
Pl

,

(19)

The Friedmann equation,

ΩX + Ωrad + Ωkin,ϕ + ΩV = 1 , (20)

which implies

dϕ

dN
= MPl

√
6(1− ΩX − Ωrad − ΩV ). (21)

The nontrivial equation is the KG equation, which becomes

d2ϕ

dN2
+

(
3

2
ΩX + Ωrad + 3ΩV

)
dϕ

dN
= 3cMPlΩX −

1

H2

dV

dϕ
, (22)
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Analytical results

Assuming that ϕ = ϕi + kN, and ignoring Ωrad , implies

3

(
1

2
ΩX + ΩV

)
k = 3cΩX −

1

H2
V ′, (23)

k2

6
= 1− ΩX − ΩV . (24)

Assuming now V ′ ∼ α̃V0 and H2 ∼ const, implies

ΩV '
1

1 + α̃/c

1− 3
2c2

(
1 +

3

2c2

)
. (25)
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Analytical results

ΩV '
1

1 + α̃/c

1− 3
2c2

(
1 +

3

2c2

)
. (26)

From Friedmann equation

ΩX = 1− ΩV −
3

2c2
≥ 0⇒ ΩV ≤ 1− 3

2c2
. (27)

The results above implies

α̃ ≥ 3

c
. (28)

Typically

ΩX ∼ 10−4, Ωkin ∼ 10−5, ΩV ∼ 1− ΩX − Ωkin. (29)
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Numerical results

The numerical solution of

d2ϕ

dN2
+

(
3

2
ΩX + Ωrad + 3ΩV

)
dϕ

dN
= 3cMPlΩX −

1

H2

dV

dϕ
, (30)

with

V (ϕ) ' V0

[
1− Be

−
√

2
3

ϕ
MPl

]
. (31)

gives, in fact, an attractor.
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Numerical results

Figure 1: Attractor is achieved after 20 e-folds.
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Caution
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Some comments

• In usual inflation, the perturbations in the canonical scalar ϕ get

mixed with the perturbations in the (scalar part of the) gravitational

perturbations, leading to the Mukhanov-Sasaki equation for the

combined variable ϕk(η) (η is conformal time).

• We have, on the top of that, fluctuations on the original

nonrelativistic particle density at the begining of the phase, ρm,0, as

well as in principle fluctuations in the number of e-folds, N(η), since

dN(η) = da(η)/a(η).

• This is not only more complicated, but also in principle

model-dependent, as we need to explain the mechanism of

production of ρm,0, that will be tied in with the mechanism for

generating perturbations for them.
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A coarse description

H2ϕ′′ +
(
1
2ρX + V

)
ϕ′ = − d

dϕVeff(ϕ,N) ,

H2ϕ′′ + Vinflϕ
′ = − d

dϕVinfl(ϕ) ,

• How do we choose Vinfl(ϕ)?
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A coarse description

• Solve

H2ϕ′′ +

(
1

2
ρX + V

)
ϕ′ = − d

dϕ
Veff(ϕ,N) , (32)

to get Veff(N)

∣∣∣∣
att

≡ f (N).

• Guess a potential Vinfl(ϕ) that after solving

H2ϕ′′ + Vinflϕ
′ = − d

dϕ
Vinfl(ϕ) (33)

we get Vinfl(N) ≡ g(N) = f (N).
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A coarse description

For

Vinfl(ϕ) = c1(1− c2ϕ)q, (34)

200 210 220 230 240 2504.×10-10

4.5×10-10

5.×10-10

5.5×10-10

6.×10-10

6.5×10-10

7.×10-10

f(N)

g(N)

Figure 2: c1 = 1.256× 10−9, c2 = 0.04357 and q = 0.9375. The relative is

less than 1 percent.
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A coarse description

Finally, using

ε =
M2

Pl

2

(
V ′infl(ϕ)

Vinfl(ϕ)

)2

, η = M2
Pl

V ′′infl(ϕ)

Vinfl(ϕ)
, (35)

and then

ns = −6ε+ 2η + 1, r = 16ε. (36)

For 50 e-folds we get

ns = 0.9807, r = 0.049, (37)

while for 60 e-folds

ns = 0.9829, r = 0.043. (38)
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Final result
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Conclusion



Summary

• We have investigated the possibility that the inflaton in conformal

inflation models is also a chameleon, coupling with some heavy

non-relativistic particles present during inflation.

• The chameleon coupling leads to attractor solutions for the energy

densities.

• A coarse treatment suggests that the values of the cosmological

observables goes from the sweet spot of Planck data to almost out

of the allowed region.
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Questions?



Ghosts and Tachyons

Consider

S(φ) = c1

∫
d4x(ηµν∂µφ∂νφ− c2m

2φ2). (39)

In term of the modes,

S(φ) = c1

∫
dt(φ̇2k −m2

kφ
2
k), (40)

where m2
k = m2 + c2~k

2.



Ghosts and Tachyons

Remember m2
k = m2 + c2~k

2.

(i) Normal healthy field has c1 = c2 = 1. Oscillatory type with usual

boundary conditions

φ̈k + m2
kφk = 0. (41)

(ii)Tachyon has c1 = 1 and c2 = −1. For small momenta m2
k < 0,

φ̈k − ω2
kφk = 0, ω2

k = |m2
k |. (42)

Exponential solutions. If the particle moves faster than the speed of light

we recover normal oscillatory solutions.



Ghosts and Tachyons

Remember m2
k = m2 + c2~k

2.

(iii) Massive ghost has c1 = −1 and c2 = 1. It implies negative kinetic

energy. Oscillatory equations. Problem arises only when coupled to other

healthy fields.

(iv)Tachyonic ghosts has c1 = −1 and c2 = −1. All the problems

associated to ghosts and tachyons.
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