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Abstract

Podolsky electrodynamics is generalized to curved spacetimes.

The equations of motion are written for the case of a static
spherically symmetric black hole (BH).

BH exterior solutions are analyzed using Bekenstein’s method.

It is shown that the solutions split-up into two parts:
(I) a non-homogeneous (asymptotically massless) regime;
(II) a homogeneous (asymptotically massive) sector.

The non-homogeneous exterior solutions to the BH are of the
Maxwell’s type leading to a Reissner-Nordström black hole.

The only exterior solution (non-homogeneous or otherwise) consistent
with the weak and null energy conditions is the Maxwell’s one.

Conclusion: the no-hair theorem is satisfied for Podolsky fields.
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I. Motivation

The no-hair theorem/conjecture states that an exterior solution of a
BH is completely characterized by its mass, electric charge and
angular momentum.

All other features of particles – the “hair”– have no contribution for
the gravitational properties of the black hole.

The no-hair theorem has been demonstrated for many cases but
several results suggest that its validity is limited.

Bekenstein analyzes BHs in the presence of the massive vector field of
Proca electrodynamics.

R.R. Cuzinatto et al (McGill; UNIFAL-MG) Podolsky BH and no-hair [arXiv:1706.09455] 4 / 35



I. Motivation

Bekenstein’s reasoning does not use an analytical explicit solution for
Proca BH.

Bekenstein shows that the Proca massive vectorial field cannot
propagate outside the event horizon.

On the other hand, Maxwell massless vectorial field does propagate
beyond the horizon and gives BH its charge.

Why can Maxwell field propagate outside the event horizon whilst
Proca field can not?
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I. Motivation

Difference between Proca field and Maxwell field:
– Maxwell is massless and gauge invariant;
– Proca is massive and non-gauge invariant.

Thus, the previous question may be reformulated as: Can gauge
invariance and mass/massless property be the keystones for the
difference concerning field propagation in BH physics context?

We address this question via Podolsky electrodynamics.

Reasons for choosing Podolsky:
(I) It is the only second order gauge theory for the U(1) group to

preserve the linearity of the field equations;
(II) the solution of the field equations shows Podolsky field splits

in two modes: a massive mode and a massless one.
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I. Motivation

Podoslky Lagrangian exhibits Maxwell term plus a term scaling with
the second derivative of the gauge field, leading to fourth-order field
equations.

The goal is to study the propagation of vector fields outside the event
horizon for a Podolsky BH thereby determining if the no-hair
theorem remains valid for Podolsky BH.

Outline of the approach:
– Generalize Podolsky electrodynamics to curved spacetime;
– Investigate the properties of the exterior spherically symmetric

solution using Bekenstein’s approach;
– Consider these properties under the scrutiny of the null and weak

energy conditions.
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II. Podolsky electrodynamics in curved spacetimes

Podolsky electrodynamics in flat spacetimes is derived from

Lflat
m = −1

4
FµνFµν +

a2

2
∂µFµν∂ρF ρ

ν , (1)

where the field strength Fµν = ∂µAν − ∂νAµ.
In a curved spacetime, Lflat

m is generalized to:

Lm = −1

4
FαβFαβ +

a2

2
∇βFαβ∇γF γ

α +
b2

2
∇βFαγ∇βFαγ . (2)

where the principle of general covariance ηµν → gµν is assumed. The term
scaling with a2 is immediately understood from the minimal coupling
prescription, ∂µ → ∇µ. The additional term scaling with b2 is allowed by
the requirement of gauge invariance under U(1) group.
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II. Podolsky electrodynamics in curved spacetimes

The dynamics is obtained from Einstein-Hilbert–Podolsky action

S =
1

16π

∫
d4x
√
−g [−R + 4Lm] , (3)

From the variation with respect to Aµ we obtain Podolsky equations of
generalized electromagnetism in curved spacetime:

∇ν
[
Fµν −

(
a2 + 2b2

)
Hµν + 2b2Sµν

]
= 0, (4)

where Hµν and Sµν are antisymmetric tensors defined as

Hµν ≡ ∇µK ν −∇νKµ, (5)

Sµν ≡ FµσR ν
σ − F νσR µ

σ + 2Rµ ν
σ βF βσ, (6)

with
Kµ ≡ ∇γFµγ . (7)

R.R. Cuzinatto et al (McGill; UNIFAL-MG) Podolsky BH and no-hair [arXiv:1706.09455] 9 / 35



II. Podolsky electrodynamics in curved spacetimes

Variation of S with respect to gµν leads to Einstein equations of gravity:

Rµν −
1

2
gµνR = 8πTµν , (8)

where Tµν =
(
TM
µν + T a

µν + T b
µν

)
and

TM
µν =

1

4π

[
FµσF σ

ν + gµν
1

4
FαβFαβ

]
, (9)

T a
µν =

a2

4π

[
gµνF γ

β ∇γKβ +
gµν
2

KβKβ

+ 2F α
(µ∇ν)Kα − 2F α

(µ∇αKν) − KµKν

]
, (10)

T b
µν =

b2

2π

[
−1

4
gµν∇βFαγ∇βFαγ + F γ

(µ∇
β∇βFν)γ

+ Fγ(µ∇β∇ν)F βγ −∇β
(

F β
γ ∇(µF γ

ν)

)]
. (11)

The notation (µν) indicates symmetrization with respect to indices µν.
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II. Podolsky electrodynamics in curved spacetimes

Now we consider this system of field equations in the particular case of
(static) spherical symmetry. The line element can be written as

ds2 = eν(r)dt2 − eλ(r)dr 2 − r 2dθ2 − r 2 sin2 θdφ2 , (12)

while the field strength is given by

Fµν = E (r)
[
δ1
µδ

0
ν − δ0

µδ
1
ν

]
. (13)

In view of this parametrization, Podolsky equations (4) are:

E −
(
a2 + 2b2

)
∂1K0 + 2b2S10 = C

e
(ν+λ)

2

r 2
, (14)

where C is an arbitrary integration constant and

K0 = e
ν−λ

2

r2 ∂1

(
r 2e−

(ν+λ)
2 E

)
, (15)

S10 = Ee−λ
(
ν′−λ′

r

)
. (16)

Prime denotes derivative with respect to r .
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II. Podolsky electrodynamics in curved spacetimes

In a flat spacetime the spherically symmetric solution to the
electromagnetic sector, Eq. (14), depends on

Aµ = (A0, 0, 0, 0)

which is a function of x1 = r solely. It is the result by Podolsky:

A0(r) =
C1

r
− C2e

− r
rp

r
, (17)

with r 2
p = a2 + 2b2.

The potential bears the usual Maxwell term plus a Yukawa term in
Minkowski spacetime.
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II. Podolsky electrodynamics in curved spacetimes

The non-null components of Einstein Eq. (8) are given by

e−λ
(
λ′

r
− 1

r 2

)
+

1

r 2
= 8πT 0

0 , (18)

−e−λ
(
ν ′

r
+

1

r 2

)
+

1

r 2
= 8πT 1

1 , (19)

− 1

4r
e−λ

[(
ν ′ − λ′

) (
2 + rν ′

)
+ 2rν ′′

]
= 8πT 2

2 , (20)

where

T 0
0 = −g 00g 11

8π

{
E
[
E − 2

(
a2 + 2b2

)
∂1K0 + 4b2S10

]
+

a2K 2
0

g 11
+ 2b2g 11

[(
K0

g 11
+

2E

r

)2

+
2E 2

r 2

]}
, (21)
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II. Podolsky electrodynamics in curved spacetimes

T 1
1 = −g 00g 11

8π

{
E
[
E − 2

(
a2 + 2b2

)
∂1K0 + 4b2S10

]
− a2K 2

0

g 11
− 2b2g 11

[(
K0

g 11
+

2E

r

)2

+
2E 2

r 2

]}
, (22)

T 2
2 =

g 00g 11

8π

{
E 2 − a2

[
2E∂1K0 −

K 2
0

g 11

]
+

2b2K 2
0

g 11

− 4b2g 11

[(
K0

g 11
+

2E

r

)2

+
ES10

2g 11
+

2E 2

r 2

]}
. (23)

The solution to the set of Eqs. (14)-(23) give the line element of Podolsky
BH. This solution is still to be found. We do not fulfill this task here, but
the exact solution is not required to study the validity of the no-hear
theorem. Instead, we follow Bekenstein’s approach to address this point.
This is done for both b = 0 and b 6= 0 cases.
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III. Podolsky BH exterior solution in the case b = 0

By taking b = 0 in Podolsky field equation (4), contracting it with Aµ and
integrating the result in the 4-volume exterior to BH, leads to:

I1 + I2 + I3 = 0, (24)

where

I1 =

∫ {√
−g (∂νAµ) Fµν − a2

[
Kβ∂α

(√
−ggµβgνα∂νAµ

)
−W

]}
d4x ,

I2 = a2

∮ √
−ggµβgναKβ∂νAµdSα,

I3 = −
∮ [√

−gAµ
(
Fµν − a2Hµν

)]
dSν ,

with
W =

√
−ggµβgνα (∂νAµ) (∂βKα) .
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III. Podolsky BH exterior solution in the case b = 0

Under spherical symmetry the exterior 4-volume is limited by the horizon
rH , by r∞ (r →∞) and by the past and future infinite times t → ±∞.
In this situation, Aµ = (A0, 0, 0, 0) and depends only on x1 = r .
Consequently,

I1 =

∫ √
−gg 00

[
−g 11E 2 + (aK0)2

]
d4x (25)

I2 = a2

[∫
ΩrH

+

∫
Ωr∞

]
√
−gg 00g 11K0EdS1 (26)

I3 =

[∫
ΩrH

+

∫
Ωr∞

] √
−gA0

g00g11

[
E − a2∂1K0

]
dS1 (27)

where ΩrH (Ωr∞) means that the integral is performed on the surface of
constant r = rH (r = r∞).
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III. Podolsky BH exterior solution in the case b = 0

Let us analyze the properties of I2 and I3 at both rH and r∞.

When r →∞ the spacetime becomes flat (Minkowski):
√
−gdS1 ≈ r 2dS .

Moreover, Podolsky field equation in flat spacetime is solved by

A0 ≈
C1

r
− C2e−

r
a

r

Using this in Eqs. (26) and (27) shows the integrals over Ωr∞ appearing in
I2 and I3 are null.

The case for the integrals over ΩrH is more complicated.
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III. Podolsky BH exterior solution in the case b = 0

First, we recall that the trace of the energy-momentum tensor for b = 0 is:

T =
a2

4π
g 00 (K0)2 .

This is a scalar with physical meaning – it is associated with the energy of
the system –, hence it must be finite on the horizon. On the other hand,
g 00 (rH)→∞. Consequently, (K0)2 must approach zero at least at the
same rate as g00 in order to guarantee a finite value for T on the horizon.
In this case,

I2 ∼ a2

∫
ΩrH

E r 2 sin θ

√
− g00

g 11
g 11g 00√g00dS1 ∼ 0, (28)

due to the facts that the electric field is finite on r = rH and g 11 (rH) = 0.
We conclude that the integral I2 is null on the horizon.
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III. Podolsky BH exterior solution in the case b = 0

The analysis of I3 begins by taking b = 0 in Podolsky field equation (14)
for electromagnetism on a spherically symmetric background:

E − a2∂1K0 = C
e

ν+λ
2

r 2
(29)

Replacing this back into Eq. (27) for integral I3:

I3 = −C

∫
ΩrH

A0 sin θdS1. (30)

Eq. (29) is a second order differential equation for the field E . It may be
homogeneous or non-homogeneous according to values of C .

The homogeneous solution E(h) corresponds to set C = 0. This choice
renders I3 = 0 automatically.
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III. Podolsky BH exterior solution in the case b = 0

We have just proved that both I3 vanish for the homogeneous solutions
E(h). Previously, it was shown that I2 = 0. Then, from Eq.(24),
I1 + I2 + I3 = 0, we conclude

I1 =

∫ √
−g
[
−g 11g 00E 2

(h) + g 00
(
aK0(h)

)2
]

d4x = 0. (31)

Since g00 > 0 and g11 < 0 in the region exterior to the horizon, each term
in the square-brackets of I1 is positive-definite. Hence, the only possible
solution to Eq. (31) is:

E(h) = K0(h) = 0 for r ≥ rH . (32)
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III. Podolsky BH exterior solution in the case b = 0

Eq. (32), E(h) = 0, should also be true in the asymptotic regime r � rH .

This regime is consistent with the flat spacetime limit, in which case the
electromagnetic field equation (29) gives:

E(h) ' −C1
e−

r
a

r 2

(
1 +

r

a

)
.

This is the Podoslky electric field solution that would constitute a “hair”
to the BH. However, Eq. (32) demands C1 = 0, thus imposing the no-hair
requirement: no Podolsky field exists outside the horizon.

Notice, however, that the demonstration fails for the non-homogeneous
solutions E(Nh) – corresponding to C 6= 0 in Eq. (29). This is because
I3 ∼ C is different from zero in this case. This case is considered bellow.
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III. Podolsky BH exterior solution in the case b = 0

The non-homogeneous solution to Podolsky field equation (29) is:

E(Nh) = C
e

ν+λ
2

r 2
, (33)

from which we verify that K0(Nh) = 0 by using Eq.(15),

K0 =
e

ν−λ
2

r 2
∂1

(
r 2e−

(ν+λ)
2 E

)
If we replace this result in Einstein equations – Eqs. (18,19) – we obtain
Reissner-Nordström solution; in this case, constant C is the electric
charge. Once charge is not considered “hair” of a BH, there is no hair
associated to the non-homogeneous solution E(Nh) too.

We conclude the exterior solution of the Einstein-Podolsky BH for b = 0 is
independent of parameter a. This corroborates the no-hair theorem.
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IV. Podolsky BH exterior solution in the case b 6= 0

Analogously to previous section, we contract Podoslsky field equation (4)
with Aµ and integrate over the region exterior to the BH’s horizon. This
leads to

I1b + I2b + I3b = 0 (34)

where

I1b =

∫ √
−gg 00

[
−g 11E 2 +

(
a2 + 2b2

)
(K0)2 + 2b2

(
g 11E

)2
(
ν′ − λ′

r

)]
d4x ,

(35)

I2b =
(
a2 + 2b2

) ∫
rH

√
−gg 00g 11K0EdS1, (36)

I3b =

∫
ΩrH

√
−gg 00g 11A0

[
E −

(
a2 + 2b2

)
∂1K0 + 2b2S10

]
dS1. (37)

We have already imposed spherical symmetry and the fact that integrals
over Ωr∞ vanish.
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IV. Podolsky BH exterior solution in the case b 6= 0

Subtracting Einstein equations (19) and (18) implies in:

λ′ + ν ′ = 2rg 00g11

[
a2 (K0)2 + 2b2

[(
K0 +

2g 11E

r

)2

+
2
(
g 11E

)2

r 2

]]
.

(38)
This result is then used to rewrite Eq. (35) for I1b as

I1b =

∫ √
−gg 00

[
−g 11E 2 +

(
a2 + 2b2

)
(K0)2 +

4b2

r

g ′
00

g00

(
g 11E

)2
]

d4x

− 4b2

∫ √
−gg 11

(
g 00E

)2
r

[
a2 (K0)2 + 2b2

[(
K0 +

2g 11E

r

)2

+
2
(
g 11E

)2

r 2

]]
d4x .

(39)

If we assume g ′00 ≥ 0 in the region exterior to the horizon then each term
of I1b is positive-definite. From a physical point of view, this hypothesis is
the only acceptable one once g ′00 < 0 is associated to repulsive gravity.

R.R. Cuzinatto et al (McGill; UNIFAL-MG) Podolsky BH and no-hair [arXiv:1706.09455] 24 / 35



IV. Podolsky BH exterior solution in the case b 6= 0

Indeed, if there exists a sub-region r1 < r < r2 exterior to rH where
g ′00 < 0, then particles moving radially with low velocities would
experience a repulsive force given by

d2r

dt2
' −c2Γ1

00 ⇒
d2r

dt2
' c2g 11g ′00.

Thus, we would have a region where the particle is impelled to move away
from the origin.

An additional non-physical effect appearing if g ′00 < 0 is the gravitational
blue-shift of a electromagnetic wave emitted at r1 and detected at r2 > r1.

Now that we have characterized I1b, the next step is to show under which
conditions the integrals I2b and I3b are null.
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IV. Podolsky BH exterior solution in the case b 6= 0

The trace of the energy-momentum tensor with b 6= 0,

T =

(
a2 − 2b2

)
4π

g 00 (K0)2

+
b2

π
g 00

[(
g 11E

)2
[

3

2

ν ′ − λ′

r
− 4

r 2

]
+ g 11E

(
∂1K0 −

4K0

r

)]
, (40)

follows from Eqs. (21)-(22).

In order to keep T finite at rH , K0 must tend to zero at least as
√

g00.
Then, from Eqs. (36) and (28) for I2b and I2, we conclude:

I2b ∼ I2 ∼ 0.

Podolsky field equation (14) may be used to cast integral I3b in the form:

I3b = −C

∫
ΩrH

A0 sin θdS1.
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IV. Podolsky BH exterior solution in the case b 6= 0

By arguments identical to those in the previous section, the homogeneous
solutions E(h) of Eq. (14) (C = 0) imply I3b = 0.

Thus, Eq. (34), I1b + I2b + I3b = 0 implies in I1b = 0. Under the
hypothesis g ′00 ≥ 0 at r ≥ rH it follows again that

E(h) = 0 for r ≥ rH . (41)

Hence, the only solution of Eq.(14) that could possibly be non-null is the
non-homogeneous solution E(Nh), whose asymptotic behavior (r � rH) is
of the type C/r 2. But this is again Maxwell solution of a massless photon,
in which case the no-hair theorem is satisfied.

This asymptotic behavior does not guarantees that E(Nh) is still hairless
towards the horizon. Next section gives an argument contrary to the
existence of a non-null E(Nh) different from Maxwell’s.
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V. Energy conditions and the no-hair theorem

Null energy condition (NEC) and weak energy condition (WEC) can be
used to show that the only non-trivial solution exterior to the horizon is
the non-homogeneous solution E(Nh) obtained with b = 0, i.e. Mawxell
solution leading to Reisner-Nordström BH: no hair is allowed.

The energy-momentum tensor Tµν respects the null (weak) energy
condition if the inequality

Tµνkµkν ≥ 0 (42)

holds for every null (timelike) vector kµ. For the particular case of a
diagonal Tµ

ν , the energy conditions are simply

ρ+ pi ≥ 0 with i = 1, 2, 3, (43)

where ρ ≡ T 0
0 is the energy density and p1 ≡ −T 1

1 , p2 ≡ −T 2
2 e

p3 ≡ −T 3
3 are the principal pressures. The WEC is satisfied if, besides

Eq. (43), we have:
ρ ≥ 0. (44)
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V. Energy conditions and the no-hair theorem

Eqs. (14), (21) and (22) for Podolsky field equation, T 0
0 and T 1

1 make it
possible to rewrite the Eqs. (43,44) for NEC and WEC as

ρ = −g 00g 11

8π
E

[
2Ce

(ν+λ)
2

r 2
− E

]
− a2

8π
g 00 (K0)2

− b2

4π
g 00

[(
K0 +

2g 11E

r

)2

+
2
(
g 11E

)2

r 2

]
≥ 0, (45)

ρ+ p1 = − a2

4π
g 00 (K0)2 − b2

2π
g 00

[(
K0 +

2g 11E

r

)2

+
2
(
g 11E

)2

r 2

]
≥ 0. (46)

Eq. (46) is satisfied in a region exterior to the horizon under two situations
only, namely:

1 K0 = b = 0, which leads to a Maxwell-like solution cf. Eq. (15);

2 K0 = E = 0, which implies a null field at r ≥ rH .
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V. Energy conditions and the no-hair theorem

In the first case, we also have ρ+ p2 ≥ 0 and the energy density is given by

ρ = −g 00g 11

8π
E 2,

which is positive-definite. Hence, for b = 0 we conclude that the only
solution compatible with both NEC and WEC is E = E(Nh) given by
Eq.(33). This leads to Reisner-Nordström solution.

In the second situation (where b 6= 0), the only solution satisfying NEC
and WEC is the trivial solution E = 0. This result disfavors the existence
of a non-null solution E(Nh) in the region exterior to the horizon.
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VI. Final comments

We have discussed black holes in the presence of a matter field given
by Podolsky electrodynamics.

The study is composed of three main parts:

(I) the generalization of Podolsky electrodynamics to curved
spacetime;

(II) the analysis of a static spherically symmetric solutions exterior
to Podolsky BH horizon;

(III) the scrutiny of the solutions in the light of the null and weak
energy conditions.
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VI. Final comments

The generalization of Podolsky electrodynamics to curved spacetimes
give rise to two possible types of Lagrangian:

(I)The first one is obtained by performing the minimal coupling
prescription in Eq. (1), which implies b = 0 in Eq.(2).

(II) The second possible Lagrangian is built from Utiyama’s
approach, meaning b 6= 0 in Eq. (2). This was shown to be equivalent
to the first Lagrangian up to non-minimally coupled terms depending
on the contraction of the Riemann tensor and the field strength.

This study has its importance not only at the classical level but also
in the quantum context, where Podolsky theory could help to control
ultraviolet 1-loop divergences that are present in the Einstein-Maxwell
case.
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V. Final comments

The exterior solutions were analyzed for two distinct cases, namely
those obtained by taking b = 0 and b 6= 0 in the equations of motion.

The only non-trivial solution for the electromagnetic field when b = 0
was show to be Maxwell’s solution which leads to Reissner-Nordström
BH.

For the case where b 6= 0, we have verified that the homogeneous
(asymptotically massive) solutions E(h) are null in the region exterior
to the BH horizon under the physical hypothesis g ′00 ≥ 0.

Podolsky Electrodynamics preserves U (1) gauge invariance.
Therefore, the absence of propagation of one of the Podolsky modes
in the region exterior to the horizon is directly associated to the fact
that this is a massive mode; the lack of a Podolsky propagating mode
is not related to the theory’s gauge invariance.
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V. Final comments

In the last part, we verified that the only exterior solution consistent
with the weak and null energy conditions is Maxwell’s solution, i.e.
E(Nh) with b = 0.

Therefore, any possible non-Maxwellian solution (a solution with hair
– e.g. E(Nh) with b 6= 0) necessarily violates NEC and WEC.

The conclusion is: under reasonable physical hypotheses, the static
spherically symmetric Podolsky BH satisfies the no-hair theorem.
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