Gravitational waves from low-energy inflation by particle production

Ryo Namba (McGill)

McGill Journal Club April 18, 2018

Fujita, RN, Obata & Tada, *in preparation*

Fujita, RN & Tada, PLB 778, 17 (2018), arXiv:1705.01533.

Past collaboration with

Barnaby, Hazumi, Hikage, Mukohyama, Namikawa, Peloso, Shiraishi, Shiu, Sorbo, Unal

 QQ

イロト イ母ト イヨト イヨト

Outline

Kロト K @R

× Ξ \mathbf{p} \rightarrow

×

 $2Q$

Þ

Outline

² Model with *SU*(2) [Gauge Field](#page-15-0)

[Summary and Conclusion](#page-37-0)

Kロト K @R

× \rightarrow ∍ \mathbf{p}_\perp \rightarrow Þ

 $2Q$

Introduction

Inflation ∼ a good candidate paradigm to describe the primordial Univ.

- \triangleright Solves the problems in hot BB cosmology
- \triangleright Provides seeds for structure formation

Gravitational Waves from Inflation

Gravitational waves (GWs) *hij* – generic prediction of inflation

 h_{ii} = (traceless & transverse part of δg_{ii}) = **tensor** mode

Tensor-to-scalar ratio $r \equiv \frac{\langle h h \rangle}{\langle h h \rangle}$ $\langle \zeta \zeta \rangle$

 ζ = (trace part of δg_{ij} (comoving gauge)) = **scalar** mode

A large number of experimental/observational efforts

- \circ Planck, POLARBEAR, BICEP/Keck Array, SPIDER, ...
- \circ LiteBIRD, Simons Array, EBEX, PIXIE, COrE $+ \dots$

 \diamond Future experiments aim for σ (r) = $\mathcal{O}(10^{-3})$

 QQ

Standard prediction for GWs from inflation

$$
P_{\rm GW}(k) = \frac{2H^2}{\pi^2 M_{\rm Pl}^2}\bigg|_{k=aH}, \qquad E_{\rm inflation} \cong 5 \cdot 10^{15} \,\text{GeV} \left(\frac{P_{\rm GW}}{10^{-12}}\right)^{1/4}
$$

Standard lore

 $\text{Detectable GW } P_{GW} \gtrsim 10^{-12}$ \iff Large $E_{inflation} \gtrsim 10^{16}$ GeV

 \circ Considered as direct probe of inflationary energy scale

Slightly red-tilted [∼] decreasing *^H* ?

Crucial assumptions

Source of GWs = **vacuum fluctuations** of graviton

Evolution driven only by **expansion** of the universe

4 0 8 4

 $2Q$

Evolution from Initial Quantum Vacuum

Question

How robust would this be upon detection?

*E*inflation ?

● Quantum fluctuations of vacuum?

• No interesting dynamics?

4 D F

 QQ

$$
P_{\text{GW}} \equiv \frac{\mathsf{d}}{\mathsf{d} \ln k} \left\langle (\delta g_{ij}^{\text{IT}})^2 \right\rangle \sim \frac{1}{\rho_{\text{total}}} \frac{\mathsf{d}}{\mathsf{d} \ln k} \, \rho_{\text{GW}} = \frac{\mathsf{d}}{\mathsf{d} \ln k} \, \Omega_{\text{GW}}
$$

GW power spectrum \sim Spectrum of GW energy fraction $\Omega_{\rm GW}$

• Standard lore: GW generation determined only by expansion

$$
\rho_{\text{GW}} \sim H^4 \;\; \Longrightarrow \;\; \Omega_{\text{GW}} \sim \frac{H^2}{M_{\text{Pl}}^2}
$$

In General: There can be additional source for GW

$$
\rho_{\text{GW}} \not\sim H^4 \;\implies\; \Omega_{\text{GW}} \not\sim \frac{H^2}{M_{\text{Pl}}^2}
$$

4 0 8

In general...

Detectable GW \neq **Large** $E_{\text{inflation}}$

is possible.

This is such a simple argument...

Why hasn't this possibility been considered extensively?

Ryo Namba (McGill) **GW** from Low Energy Inflation McGill 2018 11/38

4 ロ ▶ 4 母

 QQ

Scalar-vector-tensor decomposition

Decomposition theorem (in cosmology)

On **homogeneous** and **isotropic** background, **scalar**, **vector** & **tensor** modes are decoupled at the **1st-order** cosmological perturbations

$$
\delta_1 S\,,\, \delta_1 V_i \qquad \Longrightarrow \qquad h_{ij}
$$

Decomposition theorem

— But we know from observations

$$
\frac{P_{\text{GW}}}{P_{\zeta}}=r\ll 1
$$

It is difficult for the source effects to become dominant

Cook & Sorbo '11; Senatore et al. '11; Cook & Sorbo '13; Ferreira & Sloth '14; Biagetti et al. '14; Mirbabayi et al. '14; Choi et al. '15; Ferreira et al. '15; Peloso et al. '16

Exceptions to standard decomposition — requires additional "tensor"

- \bullet Introduce a new tensor field \leftarrow e.g. bi-metric theory
- **Introduce an** *SU*(**2**) **gauge field with a vev**

 $\langle A_{\mu}^{a} \rangle = A(t) \delta_{\mu}^{a}$

— Isotropic (*SO*(3) invariant) vev

— Perturbations δ A^a_μ contain **"tensor" modes**

Maleknejad & Sheikh-Jabbari '11

イロト イ押ト イラト イラトー

$$
\delta A_i^a = (A + \delta A) \delta_{ia} + \partial_i \partial_a M + \partial_i M_a + t_{ia}
$$
\n
$$
\begin{array}{c}\n\hline\n\end{array}
$$
\n"tensor" perturbation

— **"Tensor" modes** mix with GW *hij* at linear perturbations

 QQ

Outline

[Summary and Conclusion](#page-37-0)

Kロト K @R

× \prec ∍ $\mathbf{F} = \mathbf{A}$ Þ

 $2Q$

Model with *SU*(**2**) **Gauge Field**

Kロト K @R

 \mathbf{p} ×. ∍ $2Q$

Model Criteria

- $\mathbf{SU}(2)$ gauge field A^a_μ $+$ pseudo-scalar field χ
- **•** Unique interaction χ **FF**
	- ⊳ Necessary to prevent A^a_μ from decaying as $\rho_A \propto a^{-4}$

Decoupled from the inflaton sector

- \triangleright Subdominant effects on inflationary dynamics
- \triangleright Interacts with the inflaton only gravitationally

$$
\mathcal{L} = \mathcal{L}_{EH} + \mathcal{L}_{inflaton} - \frac{1}{2} (\partial \chi)^2 - U(\chi) - \frac{1}{4} F_{\mu\nu}^a F^{a,\mu\nu} + \frac{\lambda}{4f} \chi F_{\mu\nu}^a \tilde{F}^{a,\mu\nu}
$$

$$
F_{\mu\nu}^a = 2 \partial_{[\mu} A_{\nu]}^a - g \epsilon^{abc} A_{\mu}^b A_{\nu}^c , \qquad \tilde{F}^{a,\mu\nu} = \epsilon^{\mu\nu\rho\sigma} F_{\rho\sigma}/2
$$

Dimastrogiovanni, Fujita & Fasiello '16

イロト イ団 トイモトイ

Model of Interest

$$
\mathcal{L}_{\chi A} = -\frac{1}{2} (\partial \chi)^2 - U(\chi) - \frac{1}{4} F_{\mu\nu}^a F^{a,\mu\nu} + \frac{\lambda}{4f} \chi F_{\mu\nu}^a \tilde{F}^{a,\mu\nu}
$$

• Axionic field χ

$$
U(\chi)=\mu^4\left(1+\cos\frac{\chi}{f}\right)
$$

 \bullet x is in slow-roll

Kロト K 倒 ト

∋ x k ∍ $2Q$

Background Attractor

Isotropic vev

$$
\langle A_0^a \rangle = 0 \ , \quad \langle A_i^a \rangle = a \, A_{\text{BG}} \, \delta_i^a
$$

Key Parameters

Energy fraction:
$$
\Omega_A \equiv \frac{g^2 A_{BG}^4}{M_{Pl}^2 H^2}
$$

\n"**Mass**": $m_Q \equiv \frac{g A_{BG}}{H}$,
\n"**Corolling**": $\xi \equiv \frac{\lambda \dot{\chi}}{2fH} \approx m_Q + \frac{1}{m_Q}$

Control parameters
m_Q , Ω_A

(ロ) (d)

 \rightarrow ⊞ e k

D k

 299

Tensor perturbations

A a ^µ **perturbation decomposed into "scalar," "vector," "tensor"**

$$
\delta A_0^a = \partial_a Y + Y_a \,, \quad \delta A_i^a = \delta A \delta_{ia} + \partial_i \partial_a M + \partial_i M_a + \underbrace{\mathbf{t}_{ia}}_{\text{"tensor"}}
$$

Two tensor modes $h_{ij}^{\text{\tiny{TT}}}$ & t_{ia} mix at the linear order

tia hij

Parity-violating operators

$$
\mathcal{L} \supset -\frac{1}{4}\text{Tr}(\bm{F}^2) + \frac{\lambda \chi}{4f}\text{Tr}(\bm{F}\tilde{\bm{F}}) \sim m_Q \epsilon^{abc} t_{al} \partial_b t_{cl} , \ \xi \epsilon^{ijk} t_{il} \partial_j t_{kl}
$$

Parity violation \iff right-handed mode \neq left-handed mode

$$
h_{ij}^{\mathsf{TT}} = \sum_{P = R, L} e_{ij}^P h_P , \qquad t_{ij} = \sum_{P = R, L} e_{ij}^P t_P
$$

L **and** *R* **sectors are decoupled**

$$
\mathcal{T}_{R/L} = (h_{R/L}, t_{R/L})
$$
\n
$$
\mathcal{L}_{R/L} \approx \frac{1}{2} \Big(\mathcal{T}_{R/L}'^{\dagger} \mathcal{T}_{R/L}' - \mathcal{T}_{R/L}^{\dagger} \Omega_{R/L}^{2} \mathcal{T}_{R/L} \Big)
$$
\n
$$
\Big(\Omega_{R/L}^{2} \Big)_{11} \approx k^{2} - \frac{a''}{a}
$$
\n— metric tensor\n
$$
\Big(\Omega_{R/L}^{2} \Big)_{22} \approx a^{2} H^{2} \Big[\frac{k^{2}}{a^{2} H^{2}} \pm 4 m_{Q} \frac{k}{aH} + 2 m_{Q}^{2} \Big] \qquad \qquad - SU(2) \text{ tensor}
$$
\n
$$
\Big(\Omega_{R/L}^{2} \Big)_{12} \approx 2 a^{2} H^{2} \sqrt{\Omega_{A}} \Big(\mp \frac{k}{aH} - \xi \Big) \qquad \qquad \qquad - \text{mixing}
$$

t_L amplification:
$$
(2 - \sqrt{2})m_Q \lesssim \frac{k}{aH} \lesssim (2 + \sqrt{2})m_Q
$$

\n**Mixing with** $h_L: \alpha \sqrt{\Omega_A}$

\n $SU(2)$ energy fraction < 1

×.

 $2Q$

Evolution of *R*- and *L*-handed modes

- **•** Tachyonic (exponential) growth in t_l for a finite duration
- Energy transfer to *^h^L* is suppressed by [√] Ω*^A*
- After enhancement, *h^L* becomes constant
- After enhancement, t_l damps due to mass $> H$
- Energy transfer $h_L \to t_L$ sustains t_L constant after $T_L/H_L \sim \sqrt{\Omega_A}/m_G$

4 D F

Large coupling — Scale-invariant P_{GW}

Large coupling $\lambda \iff$ large friction $\iff m_Q = \text{const.} \iff$ scale invariant

Small coupling — Scale-dependent P_{GW}

Small coupling $\lambda \iff$ small friction $\iff m_Q \neq$ const. \iff scale variant

$$
f = 10^{-3} M_{Pl}
$$
, $g = 6.1 \cdot 10^{-4}$, $\frac{\mu^2}{f} = 6.9 \cdot 10^{11} \text{ GeV}$,

4 D F

 QQ

Detectable *r* **for low-scale inflation**

GW spectrum:
$$
P_{GW} \simeq P_{h_L} = \underbrace{\Omega_A F(m_Q)}_{\text{growth}} \times \frac{2H^2}{\pi^2 M_{Pl}^2}
$$
, $F(m_Q) \sim \exp(1.2\pi m_Q)$
Tensor-to-scalar: $r = \frac{P_{GW}}{P_Q} = \Omega_A F(m_Q) \times r_{standard}$

20

K ロ ト K 何 ト

• Suppressed by fractional energy density, $\Omega_A \ll 1$

*P*ζ

Exponentially enhanced by *m^Q*

Message

growth growth

- Relation between P_{GW} & *H* is no longer one-to-one
- Exponentially enhanced compared to the standard prediction
- For a given *r*, required value of *H* is exponentially smaller

Detectable *r* **for low-scale inflation**

• For given values of $\{r, m_Q, \Omega_A\}$, *H* and *g* scale as

$$
H\sim 10^{13}\,\text{GeV}\,\times \text{e}^{-0.6\pi m_Q}\,\sqrt{\frac{r}{\Omega_A}}\;,\quad g\sim 10^{-5}\,\text{e}^{-0.6\pi m_Q}\,\frac{\sqrt{r}}{\Omega_A}\qquad \qquad
$$

 $\overline{$

✍

☞

Detectable *r* **for low-scale inflation**

 $\overline{$

✍

• For given values of $\{r, m_Q, \Omega_A\}$, *H* and *g* scale as

$$
H\sim 10^{13}\,\text{GeV}\,\times\text{e}^{-0.6\pi m_Q}\,\sqrt{\frac{r}{\Omega_A}}\;,\quad g\sim 10^{-5}\,\text{e}^{-0.6\pi m_Q}\,\frac{\sqrt{r}}{\Omega_A}\qquad\qquad
$$

☞

Consistencies and Constraints

Production of gauge field δA_μ^a is very efficient. For large values of m_Q ,

- \triangleright The validity of our calculation may break down
- \triangleright Too large production may be constrained by other observables

We need to ensure a parameter space to avoid such pathologies

CHECK LIST

- \bullet Backreaction of $\delta {\cal A}_\mu^a$ to the background dynamics is negligible
- 2 Our perturbative calculation is justified
- ³ Constraints on curvature (scalar) perturbations are respected

 QQ

Backreaction to background dynamics

Tensor backreaction to **Friedmann equation**

$$
3M_{\rm Pl}^2H^2 = \rho_{\phi} + \rho_{\chi} + \rho_{A} + \langle \delta \rho_{\rm tensor} \rangle
$$

Require: $\langle \delta \rho_{\text{tensor}} \rangle \ll \rho_A$

- Tensor backreaction to **background equations of motion**
	- \blacktriangleright EOM of χ
	- \blacktriangleright EOM of A_{BG}

 $-$ **Require:** Produced δA_μ^a has negligible contribution to them

 QQ

イロト イ母ト イヨト イヨト

Perturbativity

Our perturbative calculation is justified if: $R_t \equiv \frac{\langle (t_{ij})^2 \rangle_{1-\text{loop}}}{\langle (t_{ii})^2 \rangle_{\text{tree}}}$ $\frac{\langle (t_{ij})^2 \rangle_{\text{tree}}}{\langle (t_{ij})^2 \rangle_{\text{tree}}} \ll 1$

Curvature perturbation (*in progress*)

Curvature perturbation ζ is produced by $\delta\phi$, because

— **"Tensor" modes** *tia* **do not source** ζ **at linear level**

- $-$ "Scalar" modes of $\delta {\cal A}_\mu^a$ are negligible (mass suppression)
- $-\delta\chi$ is negligible as long as it does not become a curvaton

Two possible contributions

D Spectral index can be modified by the presence of A^a_μ background vev

$$
n_s-1=2(\eta_\phi-2\epsilon_\phi-\epsilon_H)\simeq 2(\eta_\phi-\Omega_A)
$$

 \triangleright **Requires:** Ω _{*A*} $\leq 10^{-2}$

2 Second-order effects $\mathcal{O}(t^2)$ on scalar perturbations $-$ *work in progress*

 $2Q$

イロン イ団ン イミン イミン 一番

Viable Parameter Space for $r = 10^{-3}$

 $\bm{\mathsf{Backreaction}}$ / $\bm{\mathsf{perturbativity}}$ constraints: $\bm{\mathsf{g}}\ll\mathcal{G}(m_Q)\propto\bm{\mathsf{e}}^{-0.6\pi m_Q}$ **Spectral index constraint:** $g \gtrsim 10^{-3} \,\mathrm{e}^{-0.6\pi m_Q} \sqrt{r}$

Signal Distinguishability

Lesson thus far: Detection of GW would **not** necessarily fix *E*inflation

- \circ Is this a bad news ?
- \Diamond Would detected signals be indistinguishable from standard prediction ?

No.

- GW signals from this model are very **unique**
- **Look into other observables**

4 GW (tensor) non-Gaussianity

Tensor three-point correlation

$$
B_h = \langle h h h \rangle
$$

- Undetectable in standard case
- \diamond Non-linearity parameter

$$
f_{\text{NL}}^{\text{tensor}} \sim \frac{B_h}{P_{\zeta}^2} \approx \frac{r^2}{\Omega_A}
$$

 \circ Important probe of the origin of GW

4 0 8

 290

2 Parity-violating GW signals $$ Left-handed \neq Right-handed

- \circ Induces correlations that would be otherwise null
- **CMB**
	- \triangleright Temperature & B-mode $\langle TB \rangle$
	- \triangleright E-mode & B-mode $\langle EB\rangle$
- **GW interferometers**
	- \triangleright Aim for direct detection of parity violation

Outline

² Model with *SU*(2) [Gauge Field](#page-15-0)

Kロト K @R

× ×. Ξ. **B K**

重

 $2Q$

Summary and Conclusion

Future observations aim for $\sigma(r) = \mathcal{O}(10^{-3})$

• Standard notion for inflationary GW:

- \triangleright Vacuum fluctuation of graviton & evolution only by expansion
- . *E*inflation ∼= 10¹⁶ GeV × (*r*/0.01) ¹/⁴ detection of *r* implies high *E*inflation
- \bullet *SU*(2) can induce dominant GW signals \rightarrow *r* \Rightarrow high *E*_{inflation}
	- . *SU*(2) perturbations can source GWs at linear order
	- \triangleright Background motion induces parity violation in the perturbations
	- \triangleright Scale-invariant/variant features in spectra

Non-Gaussianity & parity violation can distinguish the origin of GW

- ⊳ Neither NG nor PV \implies Standard inflation
- **⊳** Both NG and PV \implies *SU*(2) origin
- ⊳ Only one of NG & PV \implies something else ??

...L[et's](#page-37-0) [ho](#page-38-0)[p](#page-37-0)[e f](#page-38-0)[or](#page-36-0)[de](#page-38-0)[te](#page-36-0)[c](#page-37-0)[tio](#page-38-0)[n](#page-0-0) [of](#page-38-0) r_{max}