Bulk Reconstruction and Entropic Area Laws

Sebastian Fischetti 1805.08891 with N. Engelhardt

McGill University

October 15, 2018

イロト 不同 トイヨト イヨト ヨー うらつ

Gravity from AdS/CFT		

An ambitious question

The (semi)classical gravity we observe in our universe emerges from some more fundamental quantum theory - how?

Gravity from AdS/CFT		
•		

An ambitious question

The (semi)classical gravity we observe in our universe emerges from some more fundamental quantum theory - how?

- Hard to even begin to answer because we don't have a full formulation of such a theory!
- In context of string theory, AdS/CFT gives us a nonperturbative formulation of a theory of quantum gravity

イロト イヨト イヨト ニヨー わらの

 But this definition is very indirect - need dictionary to reformulate boundary theory into gravitational language

Gravity from AdS/CFT		

An ambitious question

The (semi)classical gravity we observe in our universe emerges from some more fundamental quantum theory - how?

- Hard to even begin to answer because we don't have a full formulation of such a theory!
- In context of string theory, AdS/CFT gives us a nonperturbative formulation of a theory of quantum gravity
- But this definition is very indirect need dictionary to reformulate boundary theory into gravitational language

A slightly less vague question

In AdS/CFT, when and how does (semi)classical gravity emerge from boundary field theory?

Gravity from AdS/CFT		

A few related questions:

■ What does it mean for a field theory to be holographic? When is a field theory holographic? [Heemskerk, Penedones, Polchinski, Sully]

イロト 不同 トイヨト イヨト ヨー うらう

■ Given a holographic field theory, what are the dynamics of the dual gravitational theory? [Lashkari, McDermott, Van Raamsdonk, ...]

Gravity from AdS/CFT		

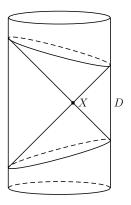
A few related questions:

- What does it mean for a field theory to be holographic? When is a field theory holographic? [Heemskerk, Penedones, Polchinski, Sully]
- Given a holographic field theory, what are the dynamics of the dual gravitational theory? [Lashkari, McDermott, Van Raamsdonk, ...]
- Given a state of a holographic field theory, is there a semiclassical dual geometry? If so, how is it (or any of its properties) obtained from the boundary state? [Van Raamsdonk; Czech, Lamprou; Engelhardt, Horowitz; ...]
- Given a dual classical geometry, how does semiclassical local physics on this geometry emerge from the boundary? [...]

イロト イヨト イヨト ニヨー わらの

Gravity from AdS/CFT		

A few related questions:

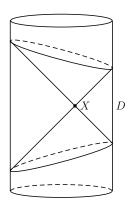

- What does it mean for a field theory to be holographic? When is a field theory holographic? [Heemskerk, Penedones, Polchinski, Sully]
- Given a holographic field theory, what are the dynamics of the dual gravitational theory? [Lashkari, McDermott, Van Raamsdonk, ...]
- Given a state of a holographic field theory, is there a semiclassical dual geometry? If so, how is it (or any of its properties) obtained from the boundary state? [Van Raamsdonk; Czech, Lamprou; Engelhardt, Horowitz; ...]
- Given a dual classical geometry, how does semiclassical local physics on this geometry emerge from the boundary? [...]

イロト イヨト イヨト ニヨー わらの

_ 0 0000 0000 000	0

 In pure AdS, local field operators can be expressed in terms of local boundary operators by integrating against a kernel [Hamilton, Kabat, Lifschytz, Lowe]:

$$\phi(X) = \int_{D \subset \partial M} d^d x \, K(X|x) \mathcal{O}(x)$$

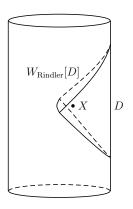

-

	Bulk Reconstruction			
0	0000	0000000	000	

 In pure AdS, local field operators can be expressed in terms of local boundary operators by integrating against a kernel [Hamilton, Kabat, Lifschytz, Lowe]:

$$\phi(X) = \int_{D \subset \partial M} d^d x \, K(X|x) \mathcal{O}(x)$$

• Kernel may be taken to have support on different boundary regions *D*

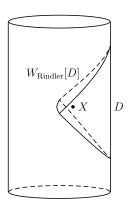


	Bulk Reconstruction			
0	0000	0000000	000	0

 In pure AdS, local field operators can be expressed in terms of local boundary operators by integrating against a kernel [Hamilton, Kabat, Lifschytz, Lowe]:

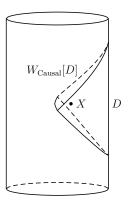
$$\phi(X) = \int_{D \subset \partial M} d^d x \, K(X|x) \mathcal{O}(x)$$

• Kernel may be taken to have support on different boundary regions *D*



	Bulk Reconstruction			
0	0000	0000000	000	0

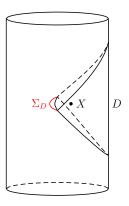
 In pure AdS, local field operators can be expressed in terms of local boundary operators by integrating against a kernel [Hamilton, Kabat, Lifschytz, Lowe]:


$$\phi(X) = \int_{D \subset \partial M} d^d x \, K(X|x) \mathcal{O}(x)$$

- Kernel may be taken to have support on different boundary regions D
- Subregion/subregion duality: a given boundary diamond D can reconstruct local operators in some subregion of the bulk

Gravity from AdS/CFT Bulk	Reconstruction			
o o •o	00	000000	000	0

• Causal argument suggests that can only recover operators causally separated from *D*


Sebastian Fischetti

	Bulk Reconstruction			
0	0000	0000000	000	0

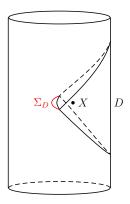
- Causal argument suggests that can only recover operators causally separated from *D*
- Too naïve: RT/HRT say that

$$S[D] = -\operatorname{Tr}(\rho_D \ln \rho_D) = \frac{\operatorname{Area}[\Sigma_D]}{4G_N \hbar}$$

with Σ_D minimal-area extremal surface homologous to D

イロト 不得下 イヨト イヨト 二日

	Bulk Reconstruction			
0	0000	0000000	000	0


- Causal argument suggests that can only recover operators causally separated from *D*
- Too naïve: RT/HRT say that

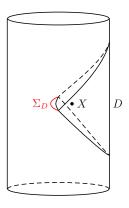
$$S[D] = -\operatorname{Tr}(\rho_D \ln \rho_D) = \frac{\operatorname{Area}[\Sigma_D]}{4G_N \hbar}$$

with Σ_D minimal-area extremal surface homologous to D

• Σ_D generically is spacelike to D, so entanglement entropy probes deeper into bulk than causal intuition implies: non-local operators can reconstruct deeper

[Czech, Karczmarek, Nogueira, Raamsdonk]

イロト 不得下 イヨト イヨト 二日

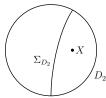

	Bulk Reconstruction			
0	0000	0000000	000	0

- Causal argument suggests that can only recover operators causally separated from *D*
- Too naïve: RT/HRT say that

$$S[D] = -\operatorname{Tr}(\rho_D \ln \rho_D) = \frac{\operatorname{Area}[\Sigma_D]}{4G_N \hbar}$$

with Σ_D minimal-area extremal surface homologous to D

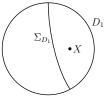
- Σ_D generically is spacelike to D, so entanglement entropy probes deeper into bulk than causal intuition implies: non-local operators can reconstruct deeper [Czech, Karczmarek, Nogueira, Raamsdonk]
- Region that can be reconstructed is the entanglement wedge $W_E[D]$

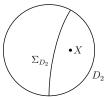


Bulk Reconstruction		
0000		

Quantum Error Correction

- Proof of entanglement wedge reconstruction comes from combining [Jafferis, Lewkowykz, Maldacena, Suh] and quantum error correction [Almheiri, Dong, Harlow]
- There's redundancy in which boundary regions a local bulk operator can have support on:





Bulk Reconstruction		
0000		

Quantum Error Correction

- Proof of entanglement wedge reconstruction comes from combining [Jafferis, Lewkowykz, Maldacena, Suh] and quantum error correction [Almheiri, Dong, Harlow]
- There's redundancy in which boundary regions a local bulk operator can have support on:

- The classical background identifies a subspace of states (the code subspace), and the different reconstructions are redundant only in this subspace
- Can then prove that any operator in $W_E[D]$ can be reconstructed (on code subspace) from D [Dong, Harlow, Wall; Faulkner, Lewkowycz]

Sebastian Fischetti

Bulk Reconstruction		
0000		

What About the Background?

- But given just the boundary state, don't know what the corresponding code subspace is (or even if there is one)
- This is precisely the question of the emergence of a classical spacetime lots of interesting physics!

	Bulk Reconstruction			
0	0000	0000000	000	0

What About the Background?

- But given just the boundary state, don't know what the corresponding code subspace is (or even if there is one)
- This is precisely the question of the emergence of a classical spacetime lots of interesting physics!
- Can try to reconstruct the full geometry, but this is hard. Partial progress:
 - Near boundary can just use Fefferman-Graham expansion
 - Hole-ography can do a little in 3D [Czech, Lamprou], though can't go too deep [Engelhardt, SF]
 - Can get causal structure from singularities of correlators [Engelhardt, Horowitz; Engelhardt, SF], but again can't go past causal wedge

イロト 不同 トイヨト イヨト ヨー うらう

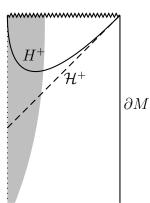
• See later in talk (if time permits)

	Bulk Reconstruction			
0	0000	0000000	000	0

What About the Background?

- But given just the boundary state, don't know what the corresponding code subspace is (or even if there is one)
- This is precisely the question of the emergence of a classical spacetime lots of interesting physics!
- Can try to reconstruct the full geometry, but this is hard. Partial progress:
 - Near boundary can just use Fefferman-Graham expansion
 - Hole-ography can do a little in 3D [Czech, Lamprou], though can't go too deep [Engelhardt, SF]
 - Can get causal structure from singularities of correlators [Engelhardt, Horowitz; Engelhardt, SF], but again can't go past causal wedge

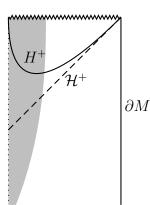
イロト 不同 トイヨト イヨト ヨー うらう


- See later in talk (if time permits)
- Instead, try recovering gravitationally interesting geometric features: area laws!

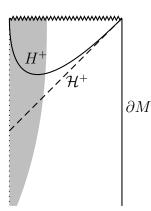
	Area Laws •000000	

- Properties of classical spacetimes, but connected to gravitational thermodynamics - presumably emerge from some coarse-graining mechanism
- Have some understanding of this for Bekenstein-Hawking entropy of BPS black holes [Strominger, Vafa]
- For dynamical black holes, less is known: interesting candidates are event horizon (globally defined) and holographic screens/apparent horizons (locally defined)

イロト 不同 トイヨト イヨト ヨー うらう


		Area Laws		
0	0000	000000	000	0

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで


Sebastian Fischetti

Gravity from AdS/CFT	Bulk Reconstruction	Area Laws	Extensions	Future Directions
O	0000	•000000	000	O

- Have understanding of area law along apparent horizons (spacelike part of H⁺) emerging from a coarse-graining mechanism, though boundary interpretation not completely understood [Engelhardt, Wall]
- Still no entropic explanation for dynamical event horizons H⁺ or mixed-signature holographic screens H⁺

Gravity from AdS/CFT	Bulk Reconstruction	Area Laws	Extensions	Future Directions
O	0000	•000000	000	O

- Have understanding of area law along apparent horizons (spacelike part of H⁺) emerging from a coarse-graining mechanism, though boundary interpretation not completely understood [Engelhardt, Wall]
- Still no entropic explanation for dynamical event horizons H⁺ or mixed-signature holographic screens H⁺

• Try to come up with a more universal miscroscopic understanding

	Area Laws	
	000000	

Coarse-Graining

- Coarse-graining is supposed to remove gravitational UV degrees of freedom
- By UV/IR correspondence, UV of bulk theory corresponds to IR of boundary, so let's introduce a prescription for discarding IR data in the boundary

	Area Laws	
	000000	

Coarse-Graining

- Coarse-graining is supposed to remove gravitational UV degrees of freedom
- By UV/IR correspondence, UV of bulk theory corresponds to IR of boundary, so let's introduce a prescription for discarding IR data in the boundary
- Consider a continuous family $F = \{D_{\lambda}\}$ of causal diamonds in some (arbitrary) QFT:

イロト 不同 トイヨト イヨト ヨー うらう

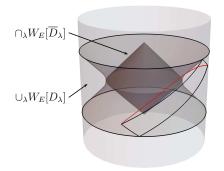
	Area Laws	
	000000	

Coarse-Graining

- Coarse-graining is supposed to remove gravitational UV degrees of freedom
- By UV/IR correspondence, UV of bulk theory corresponds to IR of boundary, so let's introduce a prescription for discarding IR data in the boundary
- Consider a continuous family $F = \{D_{\lambda}\}$ of causal diamonds in some (arbitrary) QFT:

• Restricting a full state ρ to the set $\rho_F = \{\rho_{D_\lambda}\}$ of reduced states removes knowledge of correlations between points that aren't contained in any single diamond: $\rho \to \rho_F$ is coarse-graining

	Area Laws	
	000000	

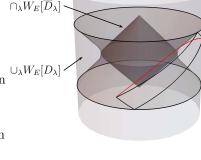

Bulk Picture

• If the QFT state has a geometric bulk dual, subregion/subregion duality tells us what this corresponds to in the bulk

	Area Laws	
	000000	

Bulk Picture

• If the QFT state has a geometric bulk dual, subregion/subregion duality tells us what this corresponds to in the bulk



Sebastian Fischetti

	Area Laws	
	000000	

Bulk Picture

- If the QFT state has a geometric bulk dual, subregion/subregion duality tells us what this corresponds to in the bulk
- A "deep bulk" region is completely unrecoverable, but can recover local operators near the asymptotic region (related to [Nomura, Rath, Salzetta])
- Consistent with rough interpretation of e.g. BH entropy as arising from ignorance of interior of black hole

		Area Laws		
0	0000	0000000	000	0

Differential Entropy and Hole-ography

- Now work in (2+1)-d bulk
- From family of regions F can define differential entropy:

$$S_{\text{diff}}[F] = \lim_{n \to \infty} \sum_{i=1}^{n} \left(S[D_i] - S[D_i \cap D_{i+1}] \right)$$

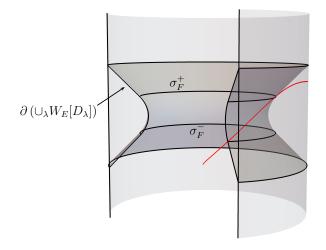
		Area Laws		
0	0000	000000	000	0

Differential Entropy and Hole-ography

- Now work in (2+1)-d bulk
- \blacksquare From family of regions F can define differential entropy:

$$S_{\text{diff}}[F] = \lim_{n \to \infty} \sum_{i=1}^{n} \left(S[D_i] - S[D_i \cap D_{i+1}] \right)$$

• $S_{\text{diff}}[F]$ computes the length of some curve(s) σ_F in the bulk constructed from the entanglement wedges of $\{D_{\lambda}\}$


[Balasubramanian, Chowdhury, Czech, de Boer, Heller; Headrick, Myers, Wien]:

$$S_{\text{diff}}[F] = \frac{\text{Length}[\sigma_F]}{4G_N\hbar}$$

 No general physical interpretation of S_{diff}[F], but partial one is as the cost of a constrained state swapping protocol [Czech, Hayden, Lashkari, Swingle]

	Area Laws	
	0000000	

Differential Entropy and Hole-ography

.≣▶ ≣ •**१**९२

Sebastian Fischetti

	Area Laws	
	0000000	

Monotonicity from SSA

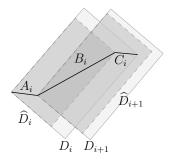
• What happens as we further coarse-grain $F = \{D_{\lambda}\}$ to $\widehat{F} = \{\widehat{D}_{\lambda}\}$ with $\widehat{D}_{\lambda} \subset D_{\lambda}$? ("Weakening the QECC")

	Area Laws	
	0000000	

Monotonicity from SSA

• What happens as we further coarse-grain $F = \{D_{\lambda}\}$ to $\widehat{F} = \{\widehat{D}_{\lambda}\}$ with $\widehat{D}_{\lambda} \subset D_{\lambda}$? ("Weakening the QECC")

• Recall strong subadditivity of entanglement entropy:

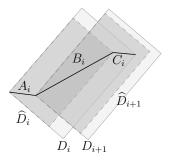

$$S[AB] + S[BC] - S[ABC] - S[B] \ge 0$$

Implies irreversibility under removal of subsystems: in terms of mutual information, $I(A|B) \leq I(A|BC)$

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ クへの

		Area Laws		
0	0000	0000000	000	0

Monotonicity from SSA

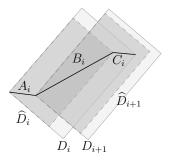

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Sebastian Fischetti

Bulk Reconstruction and Entropic Area Laws

		Area Laws		
0	0000	0000000	000	0

Monotonicity from SSA



• Applied to F and \hat{F} ,

$$\left(S[\hat{D}_i] - S[\hat{D}_i \cap \hat{D}_{i+1}] \right) - (S[D_i] - S[D_i \cap D_{i+1}])$$

= $S[A_iB_i] + S[B_iC_i] - S[A_iB_iC_i] - S[B_i] \ge 0$

		Area Laws		
0	0000	0000000	000	0

Monotonicity from SSA

• Applied to F and \hat{F} ,

$$\left(S[\hat{D}_i] - S[\hat{D}_i \cap \hat{D}_{i+1}] \right) - (S[D_i] - S[D_i \cap D_{i+1}])$$

= $S[A_iB_i] + S[B_iC_i] - S[A_iB_iC_i] - S[B_i] \ge 0$

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

•
$$S_{\text{diff}}[\widehat{F}] \ge S_{\text{diff}}[F] \Rightarrow \text{area law}$$

Sebastian Fischetti

	Area Laws	
	0000000	

Area Laws

Take-home Message

In (2+1)-bulk dimensions, we obtain a family of area laws which are a precise manifestation of strong subadditivity! Coarse-graining comes from removing long-distance correlators on the boundary^{*}.

	Area Laws	
	0000000	

Area Laws

Take-home Message

In (2+1)-bulk dimensions, we obtain a family of area laws which are a precise manifestation of strong subadditivity! Coarse-graining comes from removing long-distance correlators on the boundary^{*}.

- Proof is essentially the same as the Casini-Huerta entropic c-theorem, except no need for Poincaré invariant states
- Like *c*-theorem, the interpretation of the monotonicity is clear even if the interpretation of the thing that's monotonic (S_{diff}) is not

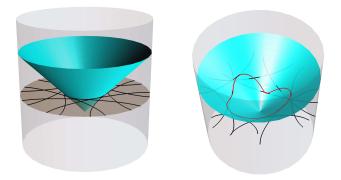
	Area Laws	
	0000000	

Area Laws

Take-home Message

In (2+1)-bulk dimensions, we obtain a family of area laws which are a precise manifestation of strong subadditivity! Coarse-graining comes from removing long-distance correlators on the boundary^{*}.

- Proof is essentially the same as the Casini-Huerta entropic c-theorem, except no need for Poincaré invariant states
- Like *c*-theorem, the interpretation of the monotonicity is clear even if the interpretation of the thing that's monotonic (S_{diff}) is not

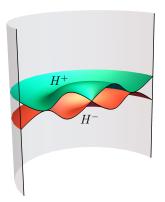

イロト 不同 トイヨト イヨト ヨー うらつ

*Caveat: interpretation in terms of coarse-graining isn't quite correct due to vacuum rigidity; if ρ is vacuum, ρ_F is sufficient to tell you're in vacuum

	Area Laws	
	000000	

Some Examples

Null; include Hawking area law for a simple causal horizon

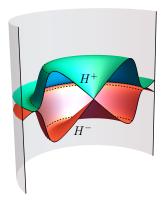


Sebastian Fischetti

		Area Laws		
0	0000	000000	000	0

Some Examples

Spacelike


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへ⊙

Sebastian Fischetti

	Area Laws	
	000000	

Some Examples

Mixed-signature; signature change similar to holographic screens

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

		Extensions	

Higher Dimensions

• In higher dimensions, for appropriate choices of the family F it's still possible to construct surfaces with monotonic area from the $W_E[D_{\lambda}]$

Bulk Reconstruction	Area Laws 0000000	Extensions	Future Directions O

Higher Dimensions

- In higher dimensions, for appropriate choices of the family F it's still possible to construct surfaces with monotonic area from the $W_E[D_{\lambda}]$
- But generalization of S_{diff} to higher dimensions is unknown, so lose the precise connection to SSA
- Hints from Casini-Huerta: there are also entropic *F* and *a*-theorems, so why not try constructing higher-d "differential entropy" by generalizing those?

Bulk Reconstruction	Area Laws 0000000	Extensions	Future Directions O

Higher Dimensions

- In higher dimensions, for appropriate choices of the family F it's still possible to construct surfaces with monotonic area from the $W_E[D_{\lambda}]$
- But generalization of S_{diff} to higher dimensions is unknown, so lose the precise connection to SSA
- Hints from Casini-Huerta: there are also entropic *F* and *a*-theorems, so why not try constructing higher-d "differential entropy" by generalizing those?

イロト 不同 トイヨト イヨト ヨー うらつ

Future work!

	Extensions	
	000	

Quantum Generalization

• Are our area laws really are saying something about gravitational thermodynamics or just artifacts of the classical limit?

Quantum Generalization

- Are our area laws really are saying something about gravitational thermodynamics or just artifacts of the classical limit?
- With quantum corrections, HRT formula gets modified [Faulkner, Lewkowycz, Maldacena; Engelhardt, Wall; Dong, Lewkowycz]:

$$S[D] = S_{\text{gen}}[\Sigma_D] = \frac{\text{Area}[\Sigma_D]}{4G_N\hbar} + S_{\text{out}}[\Sigma_D]$$

with Σ_D quantum extremal surface (extremizes $S_{\text{gen}}[\Sigma_D]$)

• Then can generalize the general classical results to show that for appropriate choice of F, can construct bulk surfaces σ_F (from $\Sigma_{D_{\lambda}}$) such that $S_{\text{gen}}[\sigma_{\widehat{F}}] \geq S_{\text{gen}}[\sigma_F]$

Quantum Generalization

- Are our area laws really are saying something about gravitational thermodynamics or just artifacts of the classical limit?
- With quantum corrections, HRT formula gets modified [Faulkner, Lewkowycz, Maldacena; Engelhardt, Wall; Dong, Lewkowycz]:

$$S[D] = S_{\text{gen}}[\Sigma_D] = \frac{\text{Area}[\Sigma_D]}{4G_N\hbar} + S_{\text{out}}[\Sigma_D]$$

with Σ_D quantum extremal surface (extremizes $S_{\text{gen}}[\Sigma_D]$)

- Then can generalize the general classical results to show that for appropriate choice of F, can construct bulk surfaces σ_F (from $\Sigma_{D_{\lambda}}$) such that $S_{\text{gen}}[\sigma_{\widehat{F}}] \geq S_{\text{gen}}[\sigma_F]$
- But a quantum generalization of the precise connection using SSA is still lacking, and would presumably include something like differential entropy of bulk

			Extensions	
0	0000	0000000	000	0

- Subregion/subregion duality suggests that $W_E[D]$, including metric, should be recoverable from D
- Operators in $W_E[D]$ are recovered from modular flow; what data in D is needed to recover metric?

			Extensions	
0	0000	0000000	000	0

- Subregion/subregion duality suggests that $W_E[D]$, including metric, should be recoverable from D
- Operators in $W_E[D]$ are recovered from modular flow; what data in D is needed to recover metric?
- Natural guess is to use entanglement entropy

			Extensions	
0	0000	0000000	000	0

- Subregion/subregion duality suggests that $W_E[D]$, including metric, should be recoverable from D
- Operators in $W_E[D]$ are recovered from modular flow; what data in D is needed to recover metric?
- Natural guess is to use entanglement entropy
- Partial progress in (2+1)-d using hole-ography made in [Czech, Lamprou], but can't reach strong-gravity regions [Engelhardt, SF]
- Boundary rigidity problem: given areas of boundary-anchored extremal surfaces, is metric unique?

			Extensions	
0	0000	0000000	000	0

- Subregion/subregion duality suggests that $W_E[D]$, including metric, should be recoverable from D
- Operators in $W_E[D]$ are recovered from modular flow; what data in D is needed to recover metric?
- Natural guess is to use entanglement entropy
- Partial progress in (2+1)-d using hole-ography made in [Czech, Lamprou], but can't reach strong-gravity regions [Engelhardt, SF]
- Boundary rigidity problem: given areas of boundary-anchored extremal surfaces, is metric unique?
- Work in progress with N. Bao, C. Cao, C. Keeler: using techniques from [Alexakis, Balehowsky, Nachman], for a (3+1) bulk, seems that knowledge of areas of arbitrary perturbations of a foliation of boundary-anchored extremal surface is sufficient to guarantee uniqueness of metric (still dotting "i"s and crossing "t"s, though!)

		Future Directions

- In (2+1) bulk, have derived a class of area laws which correspond precisely to SSA in boundary theory
- In certain contexts, these laws match the Hawking area law for event horizons, and they show the same mixed-signature behavior of holographic screens - suggests a universal microscopic mechanism

		Future Directions
		•

- In (2+1) bulk, have derived a class of area laws which correspond precisely to SSA in boundary theory
- In certain contexts, these laws match the Hawking area law for event horizons, and they show the same mixed-signature behavior of holographic screens - suggests a universal microscopic mechanism

イロト 不同 トイヨト イヨト ヨー うらう

• Can we generalize the precise connection to SSA to higher dimensions?

		Future Directions

- In (2+1) bulk, have derived a class of area laws which correspond precisely to SSA in boundary theory
- In certain contexts, these laws match the Hawking area law for event horizons, and they show the same mixed-signature behavior of holographic screens - suggests a universal microscopic mechanism
- Can we generalize the precise connection to SSA to higher dimensions?
- What's the correct quantum generalization? Related: what's the precise coarse-graining picture (which addresses vacuum rigidity issue)?

		Future Directions

- In (2+1) bulk, have derived a class of area laws which correspond precisely to SSA in boundary theory
- In certain contexts, these laws match the Hawking area law for event horizons, and they show the same mixed-signature behavior of holographic screens - suggests a universal microscopic mechanism
- Can we generalize the precise connection to SSA to higher dimensions?
- What's the correct quantum generalization? Related: what's the precise coarse-graining picture (which addresses vacuum rigidity issue)?
- How far into the bulk can they reach? Can they always reproduce the familiar area laws, or only sometimes?