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Seeing inside black holes

In a holographic theory, black holes are identified with thermal state,
ρ = e−βH .

Observables in right CFT only sensitive to region outside the horizon.
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Seeing inside black holes

Collapse to a black hole is a pure state which thermalizes.

Observables sensitive to interior in principle, but accessible probes
thermalise on scrambling time t∗ ∼ lnS ; dependence exponentially
suppressed.
Two-sided observables in eternal black hole similarly suppressed.

Feature which does not saturate in this way: Complexity.
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Complexity

N-qubit model: elementary gates are unitaries acting on O(1) qubits.

Circuit Complexity of a unitary U is minimum number of elementary
gates required to construct U. Generically O(eN).
Complexity of a state |ψ〉: given a reference state |ψ0〉, |ψ〉 = U|ψ0〉.

Local Hamiltonian H couples adjacent qubits. Assuming no redundancy,
U(t) = e iHt will have complexity C ∼ t.

Starting from a low-complexity state, local observables will thermalise in
scrambling time t∗ ∼ lnN, but complexity continues to grow until t ∼ eN .

Conjectured bound on speed of computation: Lloyd

dC
dt
≤ 2E

π~
.
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Complexity & Holography Susskind; Brown, Roberts, Susskind, Swingle & Zhao

Two proposals:

Complexity-Volume: For a boundary slice Bt , bulk surface Σt with
∂Σt = Bt ,

CV ∼ maxΣt

V (Σt)

GN`AdS

Growth in volume of Einstein-Rosen bridge reproduces expected linear
growth of C.
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Complexity & Holography Susskind; Brown, Roberts, Susskind, Swingle & Zhao

Complexity-action: “Wheeler-de Witt patch” W is bulk causal domain
of dependence of Σt ,

CA =
SW
π~

.

Reproduces linear growth

No scale in relation

Saturates conjectured bound on dC/dt
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Action Lehner, Myers, Poisson & Sorkin

Require δS = 0 for variations which leave boundary geometry unchanged.
Requires boundary terms in action:

SV =

∫
V

(R − 2Λ)
√
−g dV + 2

∑
Ti ,Si

∫
K dΣ− 2

∑
Ni

∫
κ dS dλ+ Sjoint ,

κ measures non-affineness of λ on null generators, kα∇αkβ = κkβ.
This expression is coordinate dependent! Can remove by adding

∆S = −2
∑
Ni

∫
Θ ln |`Θ| dS dλ,

Θ =
1
√
γ

∂
√
γ

∂λ
.
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Action divergences

Consider pure AdS in Poincare coordinates: the original action is

SV =
`d−1Vx

εd−1
[−4 ln(ε/`)− 2 ln(αβ)− 1

d − 1
],

assuming λ are affine parameters; α, β are normalization of λ.
Diverges like VB lnVB ; stronger than in CV.

Removing coordinate dependence also removes this stronger divergence:

S = SV + ∆S =
4`d−1Vx

εd−1
ln(d − 1).

(Note Jefferson & Myers have found VB lnVB divergences in FT
calculations for some choices of reference state.)
For more general asymptotically AdS solutions, subleading divergences
determined by local geometry of boundary.
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Complexity in AdS Soliton

Consider a FT on T d−1, with antiperiodic bc for fermions on one S1.
Dual of ground state is AdS soliton,

ds2 =
r2

`2

[
−dt2 +

(
1−

rd+
rd

)
dχ2 + d~x2

]
+

(
1−

rd+
rd

)−1
`2

r2
dr2.

Period ∆χ = 4π`2

dr+
. This has a negative energy, corresponding to Casimir

energy in FT,

E = −
Vx∆χrd+
`d+1

.

Spacetime ends at r = r+; effective IR cutoff induced by bc.
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Complexity in AdS Soliton

Complexity:

Homogeneity ⇒ holographic C = Vx∆χc(r+).

CV: maximal surface at constant t,

CV ∝ Vx∆χ
rd−1
UV − rd−1

+

`d−1

Increasing IR scale r+ decreases complexity.
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Complexity in AdS Soliton

CA: for r+ � rUV , expand in power series. Symmetry fixes

CA = Vx∆χ

[
4 ln(d − 1)

`d−1
rd−1
UV + I0r

d−1
+ + . . .

]
for some coefficient I0.

Remove leading divergence by adding Sct = −4 ln(d − 1)
∫

Σ

√
hdS .
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Complexity in AdS Soliton

Increasing IR scale r+ increases complexity initially; vanishes as IR
scale approaches UV cutoff.

Change action? δS = 0 for variations fixed on boundary only fixes
action up to boundary terms depending on geometry of boundary.
? Boundary of Wheeler-de Witt patch extends into interior, can
modify finite terms.

Comparison to FT: Jefferson & Myers calculated C for free scalar on a
toroidal lattice. Extend to fermions, look at change under change in
bc.
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de Sitter boundary

Consider a field theory on de Sitter space,

ds2
δ =

1

H2η2
(−dη2 + d~x2);

simple laboratory for time dependence.
Bulk AdS geometries with de Sitter boundaries easy to construct.
Slicing of pure AdS:

ds2 = `2(dρ2 +
sinh2 ρ

η2
(−dη2 + d~x2)).

Related to Poincare coordinates by z = − η
sinh ρ , t = η coth ρ.
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de Sitter times circle boundary

de Sitter ×S1: two possible bulk solutions.

Bubble

ds2 = f (r)dχ2 + f (r)−1dr2 +
r2

η2
(−dη2 + d~x2)

with f (r) = 1 + r2

`2 −
rd−2
0

rd−2 . Gapped solution: cut off at r = r+,

f (r+) = 0. ∆χ = 4π`2r+

(dr2
++(d−2)`2)

: two bubbles for given ∆χ.

Locally AdS: set r0 = 0, r = ` sinh ρ,

ds2 = cosh2 ρdχ2 + `2[dρ2 +
sinh2 ρ

η2
(−dη2 + d~x2))]

Horizon at ρ = 0. Ungapped solution.

Simon Ross (Durham) Complexity and Spacetime McGill 14 / 18



de Sitter complexity

Holographically, C ∝ Vx . Symmetry ⇒ C ∝ Vx

ηd−2 .

For de Sitter×S1 cases, write

C =
Vx∆χ`d−2

|η|d−2
c .

c complexity density. Constant state-dependent factor. For locally AdS,
indep of ∆χ. For bubble, depends on ∆χ through r+.
Complexity growth bound ⇒

c ≤ 2`

(d − 2)π~
ρ.

Difference between locally AdS and bubble ∆ρ = − r2
+(`2+r2

+)

`5 .
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Volume results
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Analytically, for large bubbles, ∆c ∝ rd−1
+ ; slower than rd+ behaviour of

∆ρ. Reasonable from complexity point of view; volume in units of IR
cutoff.
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Action results
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Action increases for both large and small bubbles. ∼ ln r+ for small
bubbles, ∼ rd−1

+ for large bubbles.
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Discussion

Conjectured relation of complexity to bulk geometry could provide a
probe naturally sensitive to black hole interior.

Not yet related to holographic dictionary; action calculation
intrinsically Lorentzian

Action calculation has coordinate dependence, gives stronger
divergence. Related to choice of reference state? Or change action.

Consider further examples: AdS soliton, de Sitter boundary

CA gives surprising results. Complexity grows as IR scale increases?

Further change of action? Comparison to FT?
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