Complexity and Spacetime

1612.05439, 1706.03788 + to appear, with Alan Reynolds

Simon Ross

Centre for Particle Theory, Durham University

13 September 2017

Seeing inside black holes

In a holographic theory, black holes are identified with thermal state, $\rho={\rm e}^{-\beta H}.$

Observables in right CFT only sensitive to region outside the horizon.

Seeing inside black holes

Collapse to a black hole is a pure state which thermalizes.

Observables sensitive to interior in principle, but accessible probes thermalise on scrambling time $t_* \sim \ln S$; dependence exponentially suppressed.

Two-sided observables in eternal black hole similarly suppressed.

Feature which does not saturate in this way: Complexity.

Complexity

N-qubit model: elementary gates are unitaries acting on $\mathcal{O}(1)$ qubits. **Circuit Complexity** of a unitary U is minimum number of elementary gates required to construct U. Generically $\mathcal{O}(e^N)$. Complexity of a state $|\psi\rangle$: given a reference state $|\psi_0\rangle$, $|\psi\rangle = U|\psi_0\rangle$.

Local Hamiltonian *H* couples adjacent qubits. Assuming no redundancy, $U(t) = e^{iHt}$ will have complexity $C \sim t$.

Starting from a low-complexity state, local observables will thermalise in scrambling time $t_* \sim \ln N$, but complexity continues to grow until $t \sim e^N$.

Conjectured bound on speed of computation:

Lloyd

$$\frac{d\mathcal{C}}{dt} \leq \frac{2E}{\pi\hbar}.$$

Complexity & Holography

Two proposals:

• Complexity-Volume: For a boundary slice B_t , bulk surface Σ_t with $\partial \Sigma_t = B_t$,

$$C_V \sim max_{\Sigma_t} \frac{V(\Sigma_t)}{G_N \ell_{AdS}}$$

Growth in volume of Einstein-Rosen bridge reproduces expected linear growth of $\ensuremath{\mathcal{C}}.$

Simon Ross (Durham)

Complexity & Holography

 Complexity-action: "Wheeler-de Witt patch" W is bulk causal domain of dependence of Σ_t,

$$\mathcal{C}_{A} = \frac{S_{W}}{\pi\hbar}$$

- Reproduces linear growth
- No scale in relation
- Saturates conjectured bound on $d\mathcal{C}/dt$

Simon Ross (Durham)

Action

Require $\delta S = 0$ for variations which leave boundary geometry unchanged. Requires boundary terms in action:

$$S_{\mathcal{V}} = \int_{\mathcal{V}} (R - 2\Lambda) \sqrt{-g} \, dV + 2 \sum_{T_i, S_i} \int K \, d\Sigma - 2 \sum_{N_i} \int \kappa \, dS \, d\lambda + S_{joint},$$

 κ measures non-affineness of λ on null generators, $k^{\alpha} \nabla_{\alpha} k^{\beta} = \kappa k^{\beta}$. This expression is coordinate dependent! Can remove by adding

$$\Delta S = -2\sum_{N_i} \int \Theta \ln |\ell \Theta| \, dS \, d\lambda,$$
 $\Theta = rac{1}{\sqrt{\gamma}} rac{\partial \sqrt{\gamma}}{\partial \lambda}.$

Action divergences

Consider pure AdS in Poincare coordinates: the original action is

$$S_{\mathcal{V}} = \frac{\ell^{d-1}V_x}{\epsilon^{d-1}} [-4\ln(\epsilon/\ell) - 2\ln(\alpha\beta) - \frac{1}{d-1}],$$

assuming λ are affine parameters; α, β are normalization of λ . Diverges like $V_B \ln V_B$; stronger than in CV.

Removing coordinate dependence also removes this stronger divergence:

$$S = S_{\mathcal{V}} + \Delta S = rac{4\ell^{d-1}V_x}{\epsilon^{d-1}}\ln(d-1).$$

(Note Jefferson & Myers have found $V_B \ln V_B$ divergences in FT calculations for some choices of reference state.) For more general asymptotically AdS solutions, subleading divergences determined by local geometry of boundary.

Consider a FT on T^{d-1} , with antiperiodic bc for fermions on one S^1 . Dual of ground state is AdS soliton,

$$ds^{2} = \frac{r^{2}}{\ell^{2}} \left[-dt^{2} + \left(1 - \frac{r_{+}^{d}}{r^{d}} \right) d\chi^{2} + d\vec{x}^{2} \right] + \left(1 - \frac{r_{+}^{d}}{r^{d}} \right)^{-1} \frac{\ell^{2}}{r^{2}} dr^{2}.$$

Period $\Delta \chi = \frac{4\pi\ell^2}{dr_+}$. This has a negative energy, corresponding to Casimir energy in FT,

$$E = -\frac{V_x \Delta \chi r_+^d}{\ell^{d+1}}.$$

Spacetime ends at $r = r_+$; effective IR cutoff induced by bc.

Complexity:

Homogeneity \Rightarrow holographic $C = V_x \Delta \chi c(r_+)$.

CV: maximal surface at constant t,

$$\mathcal{C}_V \propto V_x \Delta \chi rac{r_{UV}^{d-1} - r_+^{d-1}}{\ell^{d-1}}$$

Increasing IR scale r_+ decreases complexity.

CA: for $r_+ \ll r_{UV}$, expand in power series. Symmetry fixes

$$C_A = V_x \Delta \chi \left[\frac{4 \ln(d-1)}{\ell^{d-1}} r_{UV}^{d-1} + I_0 r_+^{d-1} + \dots \right]$$

for some coefficient I_0 . Remove leading divergence by adding $S_{ct} = -4 \ln(d-1) \int_{\Sigma} \sqrt{h} dS$.

- Increasing IR scale r₊ increases complexity initially; vanishes as IR scale approaches UV cutoff.
- Change action? δS = 0 for variations fixed on boundary only fixes action up to boundary terms depending on geometry of boundary.
 * Boundary of Wheeler-de Witt patch extends into interior, can modify finite terms.
- Comparison to FT: Jefferson & Myers calculated C for free scalar on a toroidal lattice. Extend to fermions, look at change under change in bc.

de Sitter boundary

Consider a field theory on de Sitter space,

$$ds_{\delta}^{2}=rac{1}{H^{2}\eta^{2}}(-d\eta^{2}+dec{x}^{2});$$

simple laboratory for time dependence.

Bulk AdS geometries with de Sitter boundaries easy to construct. Slicing of pure AdS:

$$ds^{2} = \ell^{2}(d\rho^{2} + \frac{\sinh^{2}\rho}{\eta^{2}}(-d\eta^{2} + d\vec{x}^{2})).$$

Related to Poincare coordinates by $z = -\frac{\eta}{\sinh \rho}$, $t = \eta \coth \rho$.

de Sitter times circle boundary

de Sitter $\times S^1$: two possible bulk solutions.

Bubble

$$ds^{2} = f(r)d\chi^{2} + f(r)^{-1}dr^{2} + \frac{r^{2}}{\eta^{2}}(-d\eta^{2} + d\vec{x}^{2})$$

with
$$f(r) = 1 + \frac{r^2}{\ell^2} - \frac{r_0^{d-2}}{r^{d-2}}$$
. Gapped solution: cut off at $r = r_+$,
 $f(r_+) = 0$. $\Delta \chi = \frac{4\pi \ell^2 r_+}{(dr_+^2 + (d-2)\ell^2)}$: two bubbles for given $\Delta \chi$.

• Locally AdS: set $r_0 = 0$, $r = \ell \sinh \rho$,

$$ds^{2} = \cosh^{2} \rho d\chi^{2} + \ell^{2} [d\rho^{2} + \frac{\sinh^{2} \rho}{\eta^{2}} (-d\eta^{2} + d\vec{x}^{2}))]$$

Horizon at $\rho = 0$. Ungapped solution.

de Sitter complexity

Holographically, $C \propto V_x$. Symmetry $\Rightarrow C \propto \frac{V_x}{\eta^{d-2}}$. For de Sitter× S^1 cases, write

$$\mathcal{C} = rac{V_{\mathsf{x}} \Delta \chi \ell^{d-2}}{|\eta|^{d-2}} c.$$

c complexity density. Constant state-dependent factor. For locally AdS, indep of $\Delta \chi$. For bubble, depends on $\Delta \chi$ through r_+ . Complexity growth bound \Rightarrow

$$c \leq rac{2\ell}{(d-2)\pi\hbar}
ho.$$

Difference between locally AdS and bubble $\Delta \rho = -\frac{r_+^2(\ell^2 + r_+^2)}{\ell^5}$.

Volume results

Analytically, for large bubbles, $\Delta c \propto r_+^{d-1}$; slower than r_+^d behaviour of $\Delta \rho$. Reasonable from complexity point of view; volume in units of IR cutoff.

Action results

Action *increases* for both large and small bubbles. $\sim \ln r_+$ for small bubbles, $\sim r_+^{d-1}$ for large bubbles.

Discussion

- Conjectured relation of complexity to bulk geometry could provide a probe naturally sensitive to black hole interior.
- Not yet related to holographic dictionary; action calculation intrinsically Lorentzian
- Action calculation has coordinate dependence, gives stronger divergence. Related to choice of reference state? Or change action.
- Consider further examples: AdS soliton, de Sitter boundary
- CA gives surprising results. Complexity grows as IR scale increases?
- Further change of action? Comparison to FT?