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The computation of the conformal blocks for the thermal one-point function in a 2d CFT that should
reproduce the results from [1].

Useful results

In our notation, ∆ denotes a holomorphic conformal dimension.
The following relations will be used a lot in the calculations:

[L1, L−1] = 2L0

[L0, L±1] = ∓L±1

Using these we derive the value of
[
L1, L

N
−1

]
. Let’s expand the commutator once by using the usual rule:[

L1, L
N
−1

]
= L−1

[
L1, L

N−1
−1

]
+ [L1, L−1]LN−1

−1 = L−1

[
L1, L

N−1
−1

]
+ 2L0L

N−1
−1

= L−1

[
L1, L

N−1
−1

]
+ 2LN−1

−1 L0 + 2(N − 1)LN−1
−1

From this we can guess something of the form
[
L1, L

N
−1

]
= LN−1

−1 pN and we obtain the recursion relation

pN = pN−1 + 2(L0 +N − 1)

which is solved by pN = 2NL0 +N2 −N . Together these give[
L1, L

N
−1

]
= NLN−1

−1 (2L0 +N − 1) (1)

We can so the same thing to compute
[
L−1, L

M
1

]
and we find that it can be written as LM−1

1 qM with
the following recursion relation

qM = qM−1 − 2L0 + 2(M − 1)

This is solved by qM = −2ML0 +M(M − 1) and we find the relation[
L−1, L

M
1

]
= −MLM−1

1 (2L0 −M + 1) (2)

We will also need the following relation for a primary field

[Ln, φ(z)] = ∆φ(n+ 1)znφ(z) + zn+1∂φ(z)

and especially the cases n = ±1
[L1, φ] = 2∆φzφ+ z2∂φ

[L−1, φ] = ∂φ
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Setup of the calculation

For a given primary state |∆〉 the descendant at level N is simply |∆, N〉 = LN−1 |∆〉 and the levels are
orthogonal. The first thing we need to compute the blocks is the Gram matrix BMN , which is diagonal with
entries 〈∆, N |∆, N〉. It’s easy to compute it by using the relation (1) and the fact that L1 kills the primary
state.

〈∆, N |∆, N〉 = 〈∆|LN1 LN−1 |∆〉 =
〈
LN−1

1

[
L1, L

N
−1

]〉
∆

=
〈
LN−1

1 NLN−1
−1 (2L0 +N − 1)

〉
∆

= N(2∆ +N − 1)
〈
LN−1

1 LN−1
−1

〉
∆

= N(2∆ +N − 1) · (N − 1)(2∆ +N − 2)
〈
LN−2

1 LN−2
−1

〉
∆

= · · · = N !(2∆ +N − 1)(2∆ +N − 2) · · · (2∆) 〈∆|∆〉 = N !(2∆)N

(3)

where (a)n ≡ Γ(a+n)
Γ(a) = a(a+ 1) · · · (a+n− 1) is the Pochhammer symbol. This can also be derived by using

two different ways of writing the two-point function, as can be seen in equations (113)-(117) of [2].
The next thing that we need is the three-point function

AMN (z) ≡
〈
LM1 φ(z)LN−1

〉
∆

where φ(z) is the primary operator with dimension ∆φ of which we compute the one-point function. We will
derive a recursion relation for the functions AMN (z) by taking one of the L1 all the way to the right.

AMN (z) =
〈
LM−1

1 [L1, φ(z)]LN−1

〉
∆

+
〈
LM−1

1 φ(z)L1L
N
−1

〉
∆

=
〈
LM−1

1 (2∆φzφ(z) + z2∂φ(z))LN−1

〉
∆

+
〈
LM−1

1 φ(z)
[
L1, L

N
−1

]〉
∆

= 2∆φzAM−1,N (z) + z2∂zAM−1,N (z) +N(2∆ +N − 1)AM−1,N−1(z)

(4)

We can derive another recursion relation by taking one L−1 and putting it all the way to the left.

AMN (z) =
〈
LM1 [φ(z), L−1]LN−1

−1

〉
∆

+
〈
LM1 L−1φ(z)LN−1

−1

〉
∆

=
〈
LM1 (−∂φ(z))LN−1

−1

〉
∆

+
〈[
LM1 , L−1

]
φ(z)LN−1

−1

〉
∆

= −∂zAM,N−1(z) +M(2∆−M + 1)AM−1,N−1(z)

(5)

Now remember that conformal symmetry says that A00(z) = 〈φ(z)〉∆ = 〈φ(1)〉∆ z−∆φ . From now on
we set 〈φ(1)〉∆ = 1 = A00(1) because it will appear in each term and cancel in the recursion relations. By
looking at the recursion relations (4) and (5) we can see that the z dependance must be

AMN (z) = AMN (1)z−∆φ+M−N

Plugging this in the recursion relations leads directly to the following recursions for AMN (1) ≡ AMN :

AMN = N(2∆ +N − 1)AM−1,N−1 + (∆φ +M −N − 1)AM−1,N (6)

AMN = M(2∆−M + 1)AM−1,N−1 + (∆φ +N −M − 1)AM,N−1 (7)

Note that AMN is symmetric. Also at the end everything we care about is AMN (1) because the one-point
function should not depend on the point.

Solving the recursion relations

In order to solve the recursion relations (6) and (7) we will view AMN as a symmetric matrix. The first
thing that we will compute is the values of the first line A0M and first column AM0, which are the same
since the matrix is symmetric. We can use the recursion relations to find (the terms with negative indices
vanish)

A0M = AM0 = (∆φ +M − 1)AM−1,0 = (∆φ +M − 1)(∆φ +M − 2)AM−2,0 = · · · = (∆φ)M
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To compute the blocks we actually only need the diagonal elements of the matrix, ANN . Using the
recursion relation (6) we see that each of them depend first of all only on AN−1,N−1 and AN−1,N , which are
respectively the elements on the line above that are directly to the left and directly on top of the matrix
element that we want to compute. Each of these can be related to the line above them by the recursion
relation and at the end each ANN will depend only on the first N elements of the first line. (Note that we
could do the same thing with (7) to use the first column.) We can then write

ANN =

N∑
k=0

G(N, k)A0k (8)

However the coefficients G(N, k) could be hard to get since they contain a contribution from every possible
path in the matrix leading from ANN to A0k by going either directly up or on a diagonal to the left at each
step up. In fact it turns out that when we look at the recursion relations this coefficient doesn’t depend on
the path but just on the endpoints so that it is simpler to get (still not clear why). The number of paths is
easy to determine since to reach the top we need to do N steps but to reach A0k we need to go to the left
N − k times so the number of possible ways to do this is

(
N

N−k
)

=
(
N
k

)
. With this we can write

G(N, k) =

(
N

k

)
g(N, k)

where g(N, k) doesn’t depend on the path. Because of this nice property we can pick the easiest path and
compute its contribution directly. Let’s choose the one where we go on a diagonal N − k times then we
go up k times. For the first N − k terms we pick the first part of (6) from N to N − k, which will give a
contribution of N(N − 1) · · · (N − k + 1)(2∆ +N − 1)(2∆ +N − 2) · · · (2∆ +N − k). For the rest we pick
the second contribution and since the column index is fixed to N − k at this point and only M varies from
N − k to 0 we get (∆φ − 1)(∆φ − 2) · · · (∆φ − k). Putting all of this together and rewriting a little bit gives

g(N, k) =
N !(2∆ +N − 1)!(∆φ − 1)!

k!(2∆ + k − 1)!(∆φ − k − 1)!

Finally putting everything we gathered in (8) we find

ANN =

N∑
k=0

(
N

k

)
N !

k!

(2∆ +N − 1)!

(2∆ + k − 1)!

(∆φ +N − 1)!

(∆φ − k − 1)!
(9)

which is the right result when compared to the equation in [1].
I guess it would not be too much harder to find the full matrix AMN but it’s not necessary for our

purposes.
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