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We discuss the quadratic, cubic and quartic Casimir operators of the conformal group, which commute
with all the generators. We write their expression in terms of the usual conformal generators and their
eigenvalue on an irreducible representation. We work in Euclidean signature, but generalizations are easy
to find. The conventions are the same as Simmons-Duffins notes.

1 Conformal Algebra

The conformal group in d dimensions is composed of 1 dilation operator D, d translations Pi, d special

conformal transformations Ki and d(d−1)
2 rotations Jij , which is an antisymmetric matrix. The Roman

indices run from 1 to d and there are a total of (d+2)(d+1)
2 conformal generators. The commutation relations

of these generators are
[D,Pi] = Pi

[D,Ki] = −Ki

[Mij , Pk] = δjkPi − δikPj

[Mij ,Kk] = δjkKi − δikKj

[Ki, Pj ] = 2δijD − 2Jij

[Jij , Jk`] = δjkJi` − δikJj` + δk`Jki − δi`Jkj .

(1)

The rotations obviously satisfy the SO(d) algebra.

It is useful to repackage these generators together into an antisymmetric matrix MAB with indices running
from −1 to d and metric η−1−1 = −1, η00 = ηii = 1. The relations used to define this are the following

M−10 = D

Mij = Jij

M0i =
Pi +Ki

2

M−1i =
Pi −Ki

2
.

(2)

The reason for doing this is that the MAB satisfy the algebra

[MAB ,MCD] = ηBCMAD − ηACMBD + ηBDMCA − ηADMCB , (3)

which is simply the SO(d+ 1, 1) algebra.

Rrepresentations of the conformal group are built as highest weight representation from a primary
state. The states are labelled by the eigenvalue of D, which are the conformal dimensions ∆, and the rais-
ing/lowering operators are Pi/Ki. A primary state |∆〉 has the smallest dimension and satisfies Ki |∆〉 = 0.
The rest of the reprentation is built from that primary by applying Pi repeatedly. As for Jij , the primaries
can be organized into any irreps of SO(d) and the generators act as they usually do.
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2 Quadratic Casimir

A Casimir operator for an algebra is a combination of the generators that commutes with all the generators
of the algebra. The one that is used most often is the quadratic Casimir, which is build from quadratic
combinations of the generators. For the conformal group, this quadratic Casimir is

c2 =
1

2
MABMBA . (4)

We can easily check that it commutes with every generator

[c2,MCD] ∝
[
MABMBA,MCD

]
= MAB [MBA,MCD] +

[
MAB ,MCD

]
MBA

= −MAB(ηBCMAD − ηACMBD + ηBDMCA − ηADMCB)

− (ηBCM
A
D − ηACM

B
D + ηBDMC

A − ηADMC
B)MAB

= −MA
CMAD +MC

BMBD −MA
DMCA +MD

BMCB

−MA
DMAC +MB

DMCB −MC
AMAD +MC

BMDB = 0

(5)

It is important to be able to rewrite this operator in terms of the usual conformal generators. For this we
just need to expand the sum and use the relation introduced above along with the antisymmetry of MAB .

c2 =
1

2
MABMBA =

1

2
(M ijMji +M−10M0−1 +M−1jMj−1 +M0−1M−10 +M0jMj0)

=
1

2
M ijMji +M−10M−10 +M−1iM−1i −M0iM0i

=
1

2
JijJji +D2 +

(Pi −Ki)(Pi −Ki)

4
− (Pi +Ki)(Pi +Ki)

4

=
1

2
JijJji +D2 − 1

2
PiKi −

1

2
KiPi =

1

2
JijJji +D(D − d)− PiKi

(6)

In the last step we used the conformal algebra to rewrite the last terms.

Schur’s lemma tells us that an operator that commutes with all the generators of an algebra has to be
proportional to the identity when evaluated on an irreducible representation of the algebra. This must be
the case for the quadratic Casimir, and since the value doesn’t depend on the state it is simpler to use the
primary directly. The value of D on such state is ∆ and Ki kill it. For a state belonging to a symmetric
traceless spin ` representation of SO(d), the value of 1

2JijJji is known to be `(` + d − 2). The value of the
quadratic Casimir is then

c2 = ∆(∆− d) + `(`+ d− 2) . (7)

3 Cubic Casimir

There is always the possibility of having an operator that commutes with every generator and is made
of cubic combinations of the elements of the algebra. For the conformal algebra the guess would be

c3 =
1

2
MABMBCM

C
A . (8)

However after expanding this in terms of the conformal generators it turns out that it is simply proportional
to the quadratic Casimir. The explicit relation is c3 = d

2c2. This can be simply explained by the fact that
the guess for the cubix Casimir is the trace of a product of an odd number of anti-symmetric matrices, which
vanishes. The reason why we find a nonzero result is because of the substlety that the trace vanishes up to
commutators, which however reduce the order of the terms and elads to the quadratic Casimir. This can be
said for every odd Casimir.
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4 Quartic Casimir

Continuing on the idea, there is a quartic Casimir for the conformal group, which is

c4 =
1

2
MABMBCM

CDMDA . (9)

The actual calculations needed to write it in terms of the conformal generators are long so we did it using
mathematica and the result is

c4 =D2(D − d)2 +
d(d− 1)

2
D(D − d)− 1

2
JijJji +

1

2
JijJjkJk`J`i +

(d− 1)(4− 3d)

2
PiKi

+
1

2
PiPiKjKj +

1

2
PiPjKjKi + 3(d− 1)PiDKi + 3(d− 1)PiJijKj

− 2PiD
2Ki − 2PiJijDKj − 2PiJijJjkKk .

(10)

Given that the value of the 1
2J

4 term on a symmetric traceless tensor is `2(`+d−2)2+ (d−2)(d−3)
2 `(`+d−2),

the total eigenvalue of the quartic Casimir is

c4 = ∆2(∆− d)2 +
d(d− 1)

2
∆(∆− d) + `2(`+ d− 2)2 +

(d− 1)(d− 4)

2
`(`+ d− 2) . (11)

5 Casimirs in 2d CFT

In a 2d CFT, we often work with a different basis for the generators that is related to the Virasoro algebra.
We introduce a complex coordinate z = x + iy for the plane and use the generators Ln = −zn+1∂z along
with their complex conjugates L̄n. Since we study only global conformal symmetry in general dimensions,
we need only n = −1, 0, 1. Their algebra closes to two commuting copies of the Witt algebra

[Lm, Ln] = (m− n)Lm+n . (12)

It is easy to convert the usual conformal generators to the new basis by using the chain rule on the
differential operators realization of the conformal symmetries.

D = −x ∂

∂x
− y ∂

∂y
= L0 − L̄0

P1 = − ∂

∂x
= L−1 + L̄−1

P2 = − ∂

∂y
= i(L−1 − L̄−1)

K1 = (x2 + y2)
∂

∂x
− 2x

(
x
∂

∂x
+ y

∂

∂y

)
= L1 + L̄1

K2 = (x2 + y2)
∂

∂y
− 2y

(
x
∂

∂x
+ y

∂

∂y

)
= −i(L1 − L̄1)

J12 = x
∂

∂y
− y ∂

∂x
= −i(L0 − L̄0) .

(13)

We can now use this in the general expression for the quadratic Casimir to obtain c2 = 2(C + C̄) with

C = L0(L0 − 1)− L−1L1 . (14)

When we use the new basis for the quartic Casimir, we get

1

2
c4 =L0(L0 − 1)(L2

0 − L0 + 1)− L−1L1 + L2
−1L

2
1 − 2L−1L

2
0L1

+ L̄0(L̄0 − 1)(L̄2
0 − L̄0 + 1)− L̄−1L̄1 + L̄2

−1L̄
2
1 − 2L̄−1L̄

2
0L̄1 + 6CC̄ .

(15)
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However the last term commutes with every generator by itself since it is built from the quadratic Casimir
and we can substract C and C̄ from our c4 such that we can rewrite the quartic Casimir as c4 = 2(C′ + C̄′)
with

C′ = L2
0(L0 − 1)2 + L2

−1L
2
1 − 2L−1L

2
0L1 . (16)

Actually, looking carefully at this expression, we notice quickly that it is simply equal to C2 so overall we
can rewrite the original quartic Casimir as

1

2
c4 = C2 + C̄2 + C + C̄ + 6CC̄ . (17)

The fact that the quartic Casimir can be expressed in terms of the quadratic ones in 2d comes from the
factorization of the 2d conformal group SO(3, 1) into SU(2)× SU(2). As a rank two algebra, SO(3, 1) has
two independent Casimirs and they can simply be chosen to be the quadratic Casimirs of the two SU(2),
which is exactly what C and C̄ are. We don’t expect such a simplification to happen in higher dimensions.

6 Eigenvalues of rotation Casimirs
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