Tunneling decay of false vortices

Yan Gobeil

McGill University

November 12, 2014

< □ > < 同 > < 回 >

-

- Based on the paper *Tunneling decay of false vortices* by Richard Mackenzie, Manu Paranjape and others (hep-th 1308.3501)
- I worked on this during the summer of 2013
- Some modifications to the paper
- Review of the paper *Fate of the false vacuum: Semiclassical theory* by Sidney Coleman (Phys.Rev. D15 (1977) 2929-2936)

Image: A matrix

Overview

- 2 Decay of false vacuum
 - Setting
 - Calculation

3 False vortices

- Setting
- Vortex solutions
- 4 Decay of false vortices
- 5 Decay of false vacuum 2
- 6 Conclusion

< 17 ▶

- Theory in 2+1 dimensions
- Universe is in the false vacuum (phase transition)
- Vacuum bubbles can form and decay
- Vortices are present (disk of true vacuum)
- Decay of vortices useful or not?

Image: A mathematical states of the state

Setting Calculation

$${\cal L}={1\over 2}\partial_\mu\phi\,\partial^\mu\phi-U(\phi)$$

$$\label{eq:phi} \begin{split} \phi_+ &= \mathsf{false vacuum} \\ \phi_- &= \mathsf{true vacuum} \end{split}$$

- Universe in ϕ_+ (phase transition)
- Locally (bubbles), $\phi_+ \rightarrow \phi_-$ can happen because of QM, with probability:

$$\Gamma/V = A e^{-\frac{B}{\hbar}} (1 + O(\hbar))$$

Setting Calculation

- ullet Interesting because age of the universe $<\infty$
- Consider t such that Γ/V times 4-volume of past light cone is of order 1
 - If $t \ll 1$ year: inapplicable (too hot)
 - If $t \sim 1$ year: secondary Big Bang
 - If $t \sim 10^9$ years: we should worry!

Setting Calculation

- We compute only B (A is tougher)
- Start from QM, but I skip to field theory directly

$$B = S_E = \int d\tau d^3 x \, \mathcal{L}_E$$

• E means Euclidean (au=it) and we solve with the conditions:

$$\lim_{\tau \to \pm \infty} \phi(\tau, \vec{x}) = \phi_+$$

$$\frac{\partial \varphi}{\partial \tau}(0, \vec{x}) = 0$$

$$\phi(\tau, \vec{x}) = \phi_{+} \quad \text{(finite ener)}$$

Setting Calculation

The bounce:

- Not physical
- Not unique (lowest one counts)

Image: Image:

Setting Calculation

We suppose that ϕ is invariant under O(4)

$$\phi(x)=\phi(
ho), \qquad
ho=\sqrt{ au^2+|ec x|^2}$$

The equation of motion is:

$$rac{d^2\phi}{d
ho^2}+rac{3}{
ho}rac{d\phi}{d
ho}=U'(\phi)$$

With the conditions:

$$\begin{aligned} \lim_{\rho \to \infty} \phi(\rho) &= \phi_+ \\ \frac{d\phi}{d\rho} \Big|_{\rho=0} &= 0 \quad (\text{regular at the origin}) \\ \implies B &= 2\pi^2 \int_0^\infty \rho^3 d\rho \left(\frac{1}{2} \left(\frac{d\phi}{d\rho}\right)^2 + U(\phi)\right) \end{aligned}$$

Setting Calculation

Equation of motion of a particle in the potential -U with damping

 \implies There is a solution (Supposedly with the lowest action of all)

< □ > < 同 >

We consider a complex scalar field ϕ with a gauge field A_{μ} .

$$\mathcal{L}=-rac{1}{4} extsf{F}_{\mu
u} extsf{F}^{\mu
u}+(D_{\mu}\phi)^{*}(D^{\mu}\phi)-V(|\phi|)$$

with
$$D_\mu=\partial_\mu-\textit{ie}A_\mu$$
 and $F_{\mu
u}=\partial_\mu A_
u-\partial_
u A_\mu$

The potential that we use is, after rescaling:

$$V(|\phi|) = (|\phi|^2 - \epsilon)(|\phi|^2 - 1)^2$$

This theory is invariant under a local U(1) transformation

< □ > < 同 > < 回 >

- True vacuum at $\phi = 0$
- Circle of symmetry breaking false vacua at $|\phi|=1$

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Vortex solutions

We want rotationally symmetric solutions of the form

$$\phi(t,r,\theta) = f(t,r)e^{in\theta}, \quad A_i(t,r,\theta) = -\frac{n}{e}\frac{\epsilon^{ij}r_j}{r^2}a(t,r)$$

The energy is then

$$E = 2\pi \int_{0}^{\infty} r \, dr \left(\frac{n^2 (\dot{a}^2 + a'^2)}{2e^2 r^2} + \dot{f}^2 + f'^2 + \frac{n^2}{r^2} (1-a)^2 f^2 + (f^2 - \epsilon)(f^2 - 1)^2 \right)$$

Must have $f \to 1$ and $a \to 1$ as $r \to \infty$ for finite energy Must have $f \rightarrow 0$ and $a \rightarrow 0$ as $r \rightarrow 0$ for continuity

< □ > < 同 > < 回 >

Setting Vortex solutions

This solution is a VORTEX

- Metastable for certain parameters
- Unstable for other parameters
- Topological defect of winding number n
- Section of cosmic string
- Quantized magnetic flux

- 4 🗗 ▶

We solve numerically the static EOM

$$f'' + \frac{f'}{r} - \frac{n^2}{r^2}(1-a)^2 f - (f^2 - 1)(3f^2 - (1+3\epsilon))f = 0$$
$$a'' - \frac{a'}{r} + 2e^2(1-a)f^2 = 0$$

With the vortex boundary conditions and a set of parameters (n, e, ϵ)

Yan Gobeil Tunneling decay of false vortices

5

6

4

r

2 3

0

-0.2

0 1

Vortex (n=1, e=1.00)

r

20

30

40

æ

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Yan Gobeil Tunneling decay of false vortices

0

0

10

-0.1

We generalize Coleman for the decay of the vortices

Must find the bounce, which respects:

- Vortex as $\tau \to -\infty$
- Turning point at $\tau = 0$
- Vortex as $au o \infty$

Really tough so we restrict to a one parameter family of deformations

We parametrize by the radius R of the vortex to get a bigger action

We must find the extremal solution to

$$S_E = \int d\tau \left(T + E \right)$$

$$T = 2\pi \int_{0}^{\infty} r \, dr \left(\dot{f}^2 + \frac{n^2 \dot{a}^2}{2e^2 r^2} \right)$$

$$E = 2\pi \int_{0}^{\infty} r \, dr \left(\frac{n^2 a'^2}{2e^2 r^2} + f'^2 + \frac{n^2}{r^2} (1-a)^2 f^2 + (f^2-\epsilon)(f^2-1)^2 \right)$$

With the conditions of the bounce

< □ > < 同 > < 回 >

- ₹ 🖬 🕨

э

Thin wall case $(n \gg 1)$ most interesting: separate static energy

$$E(R) = E_{int} + E_{wall} + E_{ext}$$

Interior $(r < R - \delta/2)$: • f = 0• $a = \left(\frac{r}{R}\right)^2$ Exterior $(r > R + \delta/2)$: • f = a = 1 $\Rightarrow E_{int} = \frac{2\pi n^2}{e^2 R^2} - \epsilon \pi R^2$ $\Rightarrow E_{ext} = 0$

(日) (同) (三) (三)

Main idea Decay of false vacuum Decay of false vortices Decay of false vacuum 2

Tunneling decay of false vortices

No stable solution for $\epsilon > 0.24 \left(\frac{e}{2n}\right)^{2/3} \equiv \epsilon_c$ because R_0 disappears

At first order in ϵ :

$$R_0=\left(rac{2n}{e}
ight)^{2/3}$$
 , $E_0=rac{3\pi}{2}\left(rac{2n}{e}
ight)^{2/3}$, $R_1=rac{1}{\epsilon}$

Decay of vortex: $R_0
ightarrow R_1$ quantum mechanically and $R_1
ightarrow \infty$ classically

< □ > < 同 > < 回 >

Recall the solution for n = 50, e = 1 and $\epsilon = 0.005$:

Vortex (n= 50, e= 1.00, e= 0.005)

	Approximation	Numerical	
E ₀	101.5	92.5	\implies Good approximation!!
R_0	21.5	22	
ϵ_{c}	0.0109	0.0105	

э

(日) (同) (三) (三)

To have the bounce we need T, with $R = R(\tau)$

$$T(R) = T_{int} + T_{wall} + T_{ext}$$

Interior $(r < R - \delta/2)$:

• f = 0• $a = \left(\frac{r}{R}\right)^2$ $\Rightarrow T_{int} = \frac{\pi n^2}{e^2} \frac{\dot{R}^2}{R^2}$

Exterior $(r > R + \delta/2)$:

• f = a = 1 $\Rightarrow T_{ext} = 0$

Wall $(R - \delta/2 < r < R + \delta/2)$:

• f = f(r - R) $\Rightarrow T_{wall} = \frac{\pi R}{2}\dot{R}^2$

< 口 > < 同 >

Must shift energy by E_0 to fit with Coleman

$$S_E^{thin} = \int d\tau \left(B(R) \dot{R}^2 + E(R) - E_0 \right)$$

with
$$R(-\infty) = R(\infty) = R_0$$
 and $\dot{R}(0) = 0$

We find the first integral

$$B(R)\dot{R}^2 - E(R) + E_0 = 0$$

$$\implies S_E^{thin} = 2 \int_{R_0}^{R_1} dR \sqrt{B(R)(E(R) - E_0)}$$

< □ > < 同 > < 回 >

э

After some approximations we find (for small ϵ)

$$S_E^{thin} \simeq rac{4\sqrt{2}\pi}{15\epsilon^2} \left(1 - rac{45\epsilon}{8} \left(rac{2n}{e}
ight)^{2/3}
ight)$$

and we get a lower bound

$$\Gamma^{thin} = A^{thin} \left(rac{S_E^{thin}}{2\pi}
ight)^{1/2} e^{-S_E^{thin}}$$

<ロト < 同ト < 三ト

Decay rate of vacuum $\phi = 1$ and A_{μ} not excited

We already saw the starting point, with $\phi(\tau, \vec{x}) = \phi(\rho)$ and in (2+1) d:

$$S_E^{vac} = 4\pi \int_0^\infty d
ho
ho^2(\phi'^2 + V(\phi))$$
 $\phi'' + rac{2}{
ho}\phi' = V'(\phi)$

with $\phi(\infty)=1$ (so $\phi(0)\simeq 0)$ and $\phi'(0)=0$

(日) (同) (三) (三)

If ϵ is small, the friction gives

$$\phi(
ho) = egin{cases} 0 & ext{for }
ho \lesssim
ho_0 \ \phi_k & ext{for }
ho \gtrsim
ho_0 \end{cases}$$

with ϕ_k respecting (neglecting ϵ in the potential)

$$\phi'_{k} = \phi_{k}(1 - \phi_{k}^{2})$$
$$\implies S_{E}^{vac}(\rho_{0}) = \pi \left(\rho_{0}^{2} - \frac{4}{3}\epsilon\rho_{0}^{3}\right)$$

< □ > < 同 > < 回 >

э

Main idea Decay of false vacuum False vortices Decay of false vacuum 2 Conclusion

The minimal action is

$$S_E^{vac} = rac{\pi}{12\epsilon^2}$$

and the decay rate for a volume $\boldsymbol{\Omega}$ is about

$$\Gamma^{
m vac} = \Omega A^{
m vac} \left(rac{S_E^{
m vac}}{2\pi}
ight)^{1/2} {
m e}^{-S_E^{
m vac}}$$

э

(日) (同) (三) (三)

Two effects of the vortices:

- Replace existing false vacuum by true vacuum (core)
- Can decay themselves

We compare:

- Universe (volume Ω) in false vacuum
- Universe with N non-interacting vortices (same volume, neglect false vacuum between them)

< A²

$$\frac{\Gamma^{vac}}{N\Gamma^{thin}} \sim \exp(S_E^{thin} - S_E^{vac}) = \exp\left(\frac{\pi}{\epsilon^2} \left(\frac{4\sqrt{2}}{15} - \frac{3\sqrt{2}\epsilon}{2} \left(\frac{2n}{e}\right)^{2/3} - \frac{1}{12}\right)\right)$$

For n = 50 and e = 1 we get (remember $\epsilon_c = 0.01$)

• For $\epsilon < 0.006$, $\frac{\Gamma^{vac}}{N\Gamma^{thin}} > 1 \Rightarrow$ vortices work against the decay • For $\epsilon > 0.006$, $\frac{\Gamma^{vac}}{N\Gamma^{thin}} < 1 \Rightarrow$ vortices help the decay

Generically $\epsilon\sim\epsilon_{c}$ helps the decay

• □ ▶ • □ ▶ • □ ▶ • •

Thank you!

Yan Gobeil Tunneling decay of false vortices

<ロト < 同ト < 三ト

æ

- ∢ ≣ ▶