Tunneling decay of false vortices

Yan Gobeil

McGill University

November 12, 2014

メロメ メタメ メミメ

 299

э

э

- Based on the paper Tunneling decay of false vortices by Richard Mackenzie, Manu Paranjape and others (hep-th 1308.3501)
- I worked on this during the summer of 2013
- Some modifications to the paper
- **•** Review of the paper Fate of the false vacuum: Semiclassical theory by Sidney Coleman (Phys.Rev. D15 (1977) 2929-2936)

 \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow

つくい

Overview

- 2 [Decay of false vacuum](#page-4-0)
	- **•** [Setting](#page-4-0)
	- **•** [Calculation](#page-6-0)

3 [False vortices](#page-10-0)

- **•** [Setting](#page-10-0)
- [Vortex solutions](#page-12-0)
- 4 [Decay of false vortices](#page-16-0)
- 5 [Decay of false vacuum 2](#page-25-0)
- 6 [Conclusion](#page-28-0)

(□) (何)

э

- • Theory in $2+1$ dimensions
- Universe is in the false vacuum (phase transition)
- Vacuum bubbles can form and decay
- Vortices are present (disk of true vacuum)
- Decay of vortices useful or not?

K ロ ▶ K 何 ▶

 Ω

[Setting](#page-4-0) [Calculation](#page-6-0)

$$
\mathcal{L}=\frac{1}{2}\partial_{\mu}\phi\,\partial^{\mu}\phi - U(\phi)
$$

 ϕ_+ = false vacuum $\phi_-=$ true vacuum

つくへ

- Universe in ϕ_+ (phase transition)
- Locally (bubbles), $\phi_+ \to \phi_-$ can happen because of QM, with probability:

$$
\Gamma/V = A e^{-\frac{B}{\hbar}} (1 + O(\hbar))
$$

[Setting](#page-4-0) [Calculation](#page-6-0)

- Interesting because age of the universe $<\infty$
- Consider t such that Γ/V times 4-volume of past light cone is of order 1
	- If $t \ll 1$ year: inapplicable (too hot)
	- If $t \sim 1$ year: secondary Big Bang
	- If $t \sim 10^9$ years: we should worry!

K ロ ▶ K 何 ▶

つへへ

[Calculation](#page-6-0)

- • We compute only B (A is tougher)
- Start from QM, but I skip to field theory directly

$$
B=S_E=\int d\tau d^3x\,\mathcal{L}_E
$$

• E means Euclidean ($\tau = it$) and we solve with the conditions:

$$
\lim_{\tau \to \pm \infty} \phi(\tau, \vec{x}) = \phi_{+}
$$
\n
$$
\frac{\partial \phi}{\partial \tau}(0, \vec{x}) = 0
$$
\n
$$
\lim_{|\vec{x}| \to \infty} \phi(\tau, \vec{x}) = \phi_{+} \quad \text{(finite energy)}
$$

and in

→ 母→

[Calculation](#page-6-0)

The bounce:

- Not physical
- Not unique (lowest one counts)

K ロ ▶ K 何 ▶

Ξ

×

Þ

∍ × つくへ

[Calculation](#page-6-0)

We suppose that ϕ is invariant under $O(4)$

$$
\phi(x) = \phi(\rho), \qquad \rho = \sqrt{\tau^2 + |\vec{x}|^2}
$$

The equation of motion is:

$$
\frac{d^2\phi}{d\rho^2} + \frac{3}{\rho}\frac{d\phi}{d\rho} = U'(\phi)
$$

With the conditions:

$$
\lim_{\rho \to \infty} \phi(\rho) = \phi_+
$$
\n
$$
\left. \frac{d\phi}{d\rho} \right|_{\rho=0} = 0 \quad \text{(regular at the origin)}
$$
\n
$$
\implies B = 2\pi^2 \int_0^\infty \rho^3 d\rho \left(\frac{1}{2} \left(\frac{d\phi}{d\rho} \right)^2 + U(\phi) \right)
$$

경기

 QQ

[Calculation](#page-6-0)

Equation of motion of a particle in the potential $-U$ with damping

 \implies There is a solution (Supposedly with the lowest action of all)

K ロ ▶ K 何 ▶

つくい

[Main idea](#page-3-0) [Decay of false vacuum](#page-4-0) [False vortices](#page-10-0) [Decay of false vortices](#page-16-0) [Decay of false vacuum 2](#page-25-0) [Conclusion](#page-28-0) [Setting](#page-10-0) [Vortex solutions](#page-12-0)

We consider a complex scalar field ϕ with a gauge field A_{μ} .

$$
\mathcal{L}=-\frac{1}{4}F_{\mu\nu}F^{\mu\nu}+(D_\mu\phi)^*(D^\mu\phi)-V(|\phi|)
$$

with $D_{\mu} = \partial_{\mu} - ieA_{\mu}$ and $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$

The potential that we use is, after rescaling:

$$
V(|\phi|) = (|\phi|^2 - \epsilon)(|\phi|^2 - 1)^2
$$

This theory is invariant under a local $U(1)$ transformation

メロメ メ母メ メミメ メミメ

つくい

- True vacuum at $\phi = 0$
- Circle of symmetry breaking false vacua at $|\phi| = 1$

K ロ ▶ K 何 ▶ K

造

э $\,$ э つくへ

We want rotationally symmetric solutions of the form

$$
\phi(t,r,\theta)=f(t,r)e^{in\theta}, \quad A_i(t,r,\theta)=-\frac{n}{e}\frac{\epsilon^{ij}r_j}{r^2}a(t,r)
$$

The energy is then

$$
E = 2\pi \int_{0}^{\infty} r dr \left(\frac{n^2(\dot{a}^2 + a'^2)}{2e^2r^2} + \dot{f}^2 + f'^2 + \frac{n^2}{r^2}(1-a)^2f^2 + (f^2 - \epsilon)(f^2 - 1)^2 \right)
$$

Must have $f \to 1$ and $a \to 1$ as $r \to \infty$ for finite energy Must have $f \to 0$ and $a \to 0$ as $r \to 0$ for continuity

∢ロ ▶ ∢伺 ▶ ∢∃ ▶

 Ω

[Vortex solutions](#page-12-0)

This solution is a VORTEX

- Metastable for certain parameters
- Unstable for other parameters
- Topological defect of winding number *n*
- Section of cosmic string
- Quantized magnetic flux

 Ω

We solve numerically the static EOM

$$
f'' + \frac{f'}{r} - \frac{n^2}{r^2}(1-a)^2 f - (f^2 - 1)(3f^2 - (1+3\epsilon))f = 0
$$

$$
a'' - \frac{a'}{r} + 2e^2(1-a)f^2 = 0
$$

With the vortex boundary conditions and a set of parameters (n, e, ϵ)

Yan Gobeil [Tunneling decay of false vortices](#page-0-0)

Yan Gobeil [Tunneling decay of false vortices](#page-0-0)

イロメ イ部メ イミメ イモメ

目

We generalize Coleman for the decay of the vortices

Must find the bounce, which respects:

- Vortex as $\tau \to -\infty$
- Turning point at $\tau = 0$
- Vortex as $\tau \to \infty$

Really tough so we restrict to a one parameter family of deformations

We parametrize by the radius R of the vortex to get a bigger action

 $4.73 \times 4.73 \times 4.73 \times$

つくい

We must find the extremal solution to

$$
S_E = \int d\tau (T + E)
$$

$$
T = 2\pi \int\limits_{0}^{\infty} r \, dr \left(\dot{r}^2 + \frac{n^2 \dot{\vec{\sigma}}^2}{2e^2 r^2}\right)
$$

$$
E = 2\pi \int_{0}^{\infty} r dr \left(\frac{n^2 a'^2}{2e^2 r^2} + f'^2 + \frac{n^2}{r^2} (1-a)^2 f^2 + (f^2 - \epsilon)(f^2 - 1)^2 \right)
$$

With the conditions of the bounce

イロン イ何ン イヨン イヨン

E

Thin wall case ($n \gg 1$) most interesting: separate static energy

$$
E(R) = E_{int} + E_{wall} + E_{ext}
$$

Interior ($r < R - \delta/2$): \bullet f = 0 $a = \left(\frac{r}{b}\right)$ R $\Rightarrow E_{int} = \frac{2\pi n^2}{e^2 R^2}$ $\frac{2\pi n^2}{e^2 R^2} - \epsilon \pi R^2$ Exterior $(r > R + \delta/2)$: **e** $f = a = 1$ $\Rightarrow E_{ext} = 0$

イロト イ母 トイヨ トイヨ トー

No stable solution for $\epsilon > 0.24$ ($\frac{\epsilon}{24}$ $\frac{e}{2n}$) $^{2/3}$ \equiv ϵ_c because R_0 disappears

At first order in ϵ .

$$
R_0 = \left(\frac{2n}{e}\right)^{2/3}
$$
, $E_0 = \frac{3\pi}{2} \left(\frac{2n}{e}\right)^{2/3}$, $R_1 = \frac{1}{e}$

Decay of vortex: $R_0 \rightarrow R_1$ quantum mechanically and $R_1 \rightarrow \infty$ classically

 $4.7.14.77 \times 10^{-12}$

つへへ

Recall the solution for $n = 50$, $e = 1$ and $\epsilon = 0.005$:

Vortex (n= 50, e= 1.00, ε = 0.005)

イロト イ部 トメ 君 トメ 君 ト

E

To have the bounce we need T, with $R = R(\tau)$

$$
T(R) = T_{int} + T_{wall} + T_{ext}
$$

Interior ($r < R - \delta/2$):

 \bullet f = 0 $a = \left(\frac{r}{b}\right)$ R $\Rightarrow T_{int} = \frac{\pi n^2}{e^2}$ $\frac{\hbar^2}{e^2} \frac{\dot{R}^2}{R^2}$ R^2

Exterior $(r > R + \delta/2)$:

 \bullet f = a = 1 \Rightarrow T_{ext} = 0

Wall $(R - \delta/2 < r < R + \delta/2)$:

 \bullet f = f(r – R) $\frac{\pi R}{2}$ $\frac{1}{2}R\dot{R}^2$

K ロ ▶ K 何 ▶

つくい

Must shift energy by E_0 to fit with Coleman

$$
S_E^{thin} = \int d\tau (B(R)\dot{R}^2 + E(R) - E_0)
$$

with
$$
R(-\infty) = R(\infty) = R_0
$$
 and $\dot{R}(0) = 0$

We find the first integral

$$
B(R)\dot{R}^2 - E(R) + E_0 = 0
$$

$$
\implies S_E^{thin} = 2 \int_{R_0}^{R_1} dR \sqrt{B(R)(E(R) - E_0)}
$$

K ロト K 倒 ト K 毛

Þ

重 \rightarrow

 \sim \rightarrow

After some approximations we find (for small ϵ)

$$
S_E^{thin} \simeq \frac{4\sqrt{2}\pi}{15\epsilon^2}\left(1-\frac{45\epsilon}{8}\left(\frac{2n}{e}\right)^{2/3}\right)
$$

and we get a lower bound

$$
\Gamma^{thin} = A^{thin} \left(\frac{S_E^{thin}}{2\pi}\right)^{1/2} e^{-S_E^{thin}}
$$

イロト イ部 トメ 君 トメ 君 ト

 299

э

Decay rate of vacuum $\phi = 1$ and A_μ not excited

We already saw the starting point, with $\phi(\tau, \vec{x}) = \phi(\rho)$ and in $(2+1)$ d:

$$
S_E^{\text{vac}} = 4\pi \int_0^\infty d\rho \rho^2 (\phi^{\prime 2} + V(\phi))
$$

$$
\phi^{\prime\prime} + \frac{2}{\rho} \phi^{\prime} = V^{\prime}(\phi)
$$

with $\phi(\infty)=1$ (so $\phi(0)\simeq 0)$ and $\phi'(0)=0$

メロメ メ母メ メラメメラメー

э

 Ω

If ϵ is small, the friction gives

$$
\phi(\rho) = \begin{cases} 0 & \text{for } \rho \lesssim \rho_0 \\ \phi_k & \text{for } \rho \gtrsim \rho_0 \end{cases}
$$

with ϕ_k respecting (neglecting ϵ in the potential)

$$
\phi'_k = \phi_k (1 - \phi_k^2)
$$

$$
\implies S_E^{\text{vac}}(\rho_0) = \pi \left(\rho_0^2 - \frac{4}{3} \epsilon \rho_0^3\right)
$$

K ロ ▶ K 何 ▶

 \rightarrow \pm

э

 299

∍ Пb.

The minimal action is

$$
S_E^{\text{vac}} = \frac{\pi}{12\epsilon^2}
$$

and the decay rate for a volume Ω is about

$$
\Gamma^{\text{vac}} = \Omega A^{\text{vac}} \left(\frac{S_E^{\text{vac}}}{2\pi}\right)^{1/2} e^{-S_E^{\text{vac}}}
$$

メロメ メタメ メミメ

E

一 4 三 下

Two effects of the vortices:

- Replace existing false vacuum by true vacuum (core)
- Can decay themselves

We compare:

- Universe (volume Ω) in false vacuum
- Universe with N non-interacting vortices (same volume, neglect false vacuum between them)

つくい

$$
\frac{\Gamma^{\text{vac}}}{\text{N}\Gamma^{\text{thin}}} \sim \exp(S_E^{\text{thin}} - S_E^{\text{vac}}) = \exp\left(\frac{\pi}{\epsilon^2} \left(\frac{4\sqrt{2}}{15} - \frac{3\sqrt{2}\epsilon}{2} \left(\frac{2n}{e}\right)^{2/3} - \frac{1}{12}\right)\right)
$$

For $n = 50$ and $e = 1$ we get (remember $\epsilon_c = 0.01$)

For $\epsilon < 0.006$, $\frac{\Gamma^{\text{vac}}}{N\Gamma^{\text{thin}}} > 1 \Rightarrow$ vortices work against the decay For $\epsilon > 0.006$, $\frac{\Gamma^{\text{vac}}}{N\Gamma^{\text{thin}}} < 1 \Rightarrow$ vortices help the decay

Generically $\epsilon \sim \epsilon_c$ helps the decay

オロメ オタメ オモメ オモメ

つへへ

[Main idea](#page-3-0) [Decay of false vacuum](#page-4-0) [False vortices](#page-10-0) [Decay of false vacuum 2](#page-25-0) [Conclusion](#page-28-0)

Thank you!

Yan Gobeil [Tunneling decay of false vortices](#page-0-0)

K ロト K 倒 ト K 毛

 \Rightarrow Ε

 \sim ×.