Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

The Virasoro fusion kernel and its applications

Yan Gobeil

McGill University

November 26th, 2018

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

Based on arXiv: 1811.05710 [hep-th]

Quantum Regge Trajectories and the Virasoro Analytic Bootstrap

Scott Collier, Γ_b Yan Gobeil, γ_b Henry Maxfield, γ_b, Γ_b Eric Perlmutter S_b

^{Υ_b} Jefferson Physical Laboratory, Harvard University, Cambridge, MA 02138, USA ^{γ_b} Department of Physics, McGill University, Montreal, QC H3A 2T8, Canada ^{Γ_b} Department of Physics, University of California, Santa Barbara, CA 93106, USA ^{S_b} Walter Burke Institute for Theoretical Physics, Caltech, Pasadena, CA 91125, USA

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

1 The lightcone bootstrap

2 The fusion kernel

3 Kernel and CFT data

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

The lightcone bootstrap

2 The fusion kernel

3 Kernel and CFT data

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Conformal block decomposition

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

All CFTs have OPE (here scalar)

$$\phi(x)\phi(0) = \sum_{\mathcal{O}} f_{\phi\phi\mathcal{O}} C(x,\partial) \mathcal{O}(0)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Conformal block decomposition

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

All CFTs have OPE (here scalar)

$$\phi(x)\phi(0) = \sum_{\mathcal{O}} f_{\phi\phi\mathcal{O}} C(x,\partial) \mathcal{O}(0)$$

Consider using it for 12 and 34 (s-channel) in $d \ge 3$

$$\langle \phi(x_1)\phi(x_2)\phi(x_3)\phi(x_4)
angle = rac{\sum_{\mathcal{O}} f_{\phi\phi\mathcal{O}}^2 G_{\Delta_{\mathcal{O}},\ell_{\mathcal{O}}}^{\Delta_{\phi}}(z,ar{z})}{(x_{12})^{2\Delta_{\phi}}(x_{34})^{2\Delta_{\phi}}}$$

with $G^{\Delta_{\phi}}_{\Delta_{\mathcal{O}},\ell_{\mathcal{O}}}$ conformal blocks and z, \bar{z} conformal cross-ratios

Conformal block decomposition

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

All CFTs have OPE (here scalar)

$$\phi(x)\phi(0) = \sum_{\mathcal{O}} f_{\phi\phi\mathcal{O}} C(x,\partial)\mathcal{O}(0)$$

Consider using it for 12 and 34 (s-channel) in $d \ge 3$

$$\langle \phi(x_1)\phi(x_2)\phi(x_3)\phi(x_4)
angle = rac{\sum_{\mathcal{O}} f_{\phi\phi\mathcal{O}}^2 G_{\Delta_{\mathcal{O}},\ell_{\mathcal{O}}}^{\Delta_{\phi}}(z,ar{z})}{(x_{12})^{2\Delta_{\phi}}(x_{34})^{2\Delta_{\phi}}}$$

with $G^{\Delta_{\phi}}_{\Delta_{\mathcal{O}},\ell_{\mathcal{O}}}$ conformal blocks and z, \bar{z} conformal cross-ratios Write sum in terms of twist $\tau = \Delta - \ell$

Crossing symmetry

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

Can do 14 and 23 instead (t-channel) and get same thing $\sum_{\mathcal{O}} f_{\phi\phi\mathcal{O}}^2 G_{\tau,\ell}^{\Delta\phi}(z,\bar{z}) = \left(\frac{z\bar{z}}{(1-z)(1-\bar{z})}\right)^{\Delta\phi} \sum_{\mathcal{O}'} f_{\phi\phi\mathcal{O}'}^2 G_{\tau',\ell'}^{\Delta\phi}(1-z,1-\bar{z})$

Crossing symmetry

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

Can do 14 and 23 instead (t-channel) and get same thing $\sum_{\mathcal{O}} f_{\phi\phi\mathcal{O}}^2 G_{\tau,\ell}^{\Delta\phi}(z,\bar{z}) = \left(\frac{z\bar{z}}{(1-z)(1-\bar{z})}\right)^{\Delta\phi} \sum_{\mathcal{O}'} f_{\phi\phi\mathcal{O}'}^2 G_{\tau',\ell'}^{\Delta\phi}(1-z,1-\bar{z})$

Lightcone limit

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

Take $ar{z}
ightarrow 1$, t-channel blocks behave as

$$G^{\Delta_{\phi}}_{ au',\ell'}(1-z,1-ar{z})pprox (1-ar{z})^{rac{ au'}{2}}\mathcal{K}_{\Delta'+\ell'}(1-z)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

 \Rightarrow t-channel dominated by identity!

Lightcone limit

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

Take $ar{z}
ightarrow 1$, t-channel blocks behave as

$$G^{\Delta_\phi}_{ au',\ell'}(1-z,1-ar z)pprox (1-ar z)^{rac{ au'}{2}} {\cal K}_{\Delta'+\ell'}(1-z)$$

 \Rightarrow t-channel dominated by identity!

Further take $z \rightarrow 0$, s-channel blocks behave as

$${\it G}^{\Delta_{\phi}}_{ au,\ell}(z,ar{z})pprox z^{rac{ au}{2}}\log\left(1-ar{z}
ight)$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Lightcone limit

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

Take $ar{z}
ightarrow 1$, t-channel blocks behave as

$$G^{\Delta_\phi}_{ au',\ell'}(1-z,1-ar z)pprox (1-ar z)^{rac{ au'}{2}} {\cal K}_{\Delta'+\ell'}(1-z)$$

 \Rightarrow t-channel dominated by identity!

Further take $z \rightarrow 0$, s-channel blocks behave as

$$G^{\Delta_{\phi}}_{ au,\ell}(z,ar{z})pprox z^{rac{ au}{2}}\log\left(1-ar{z}
ight)$$

Crossing symmetry becomes

$$\sum_{ au,\ell} f_{\phi\phi\mathcal{O}}^2 z^{rac{ au}{2}} \log\left(1-ar{z}
ight) = rac{z^{\Delta_\phi}}{(1-ar{z})^{\Delta_\phi}} + ...$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

Impossible to reproduce t-channel singularity with finite number of terms

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

Impossible to reproduce t-channel singularity with finite number of terms

 \Rightarrow Need infinite family of operators with

$$\tau = 2\Delta_{\phi} + 2n$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

for $\ell \to \infty$

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large *c* limits

Impossible to reproduce t-channel singularity with finite number of terms

 \Rightarrow Need infinite family of operators with

$$\tau = 2\Delta_{\phi} + 2n$$

for $\ell \to \infty$

Call these operators "double twist", schematically $[\phi\phi]_{n,\ell}=\phi\,\Box^n\partial^\ell\phi$

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

Impossible to reproduce t-channel singularity with finite number of terms

 \Rightarrow Need infinite family of operators with

$$\tau = 2\Delta_{\phi} + 2n$$

for $\ell \to \infty$

Call these operators "double twist", schematically $[\phi\phi]_{n,\ell}=\phi\,\Box^n\partial^\ell\phi$

Explicitely inverting crossing gives the OPE coefficients

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

t-channel identity \Rightarrow s-channel "double twists"

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

t-channel identity \Rightarrow s-channel "double twists"

Reproduces Mean Field Theory: CFT with correlators given by Wick contractions, contain only double twist operators

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

t-channel identity \Rightarrow s-channel "double twists"

Reproduces Mean Field Theory: CFT with correlators given by Wick contractions, contain only double twist operators

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

RESULT: Every CFT behaves as MFT at large spin

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

t-channel identity \Rightarrow s-channel "double twists"

Reproduces Mean Field Theory: CFT with correlators given by Wick contractions, contain only double twist operators

RESULT: Every CFT behaves as MFT at large spin

Including subleading operators in t-channel gives corrections to OPE and anomalous dimensions

$$\gamma_{n,\ell} \sim rac{1}{\ell^{ au}}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Regge trajectories

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Inversion formula

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusior kernel

Kernel and CFT data

Large c limits

Can write 4-point function as

$$\langle \phi(x_1)\phi(x_2)\phi(x_3)\phi(x_4) \rangle \sim \sum_{\ell=0}^{\infty} \int_{rac{d}{2}-i\infty}^{rac{d}{2}+i\infty} d\Delta C(\Delta,\ell) G_{\Delta,\ell}(z,\bar{z})$$

where C has poles at physical operator with residues giving the OPE coefficients

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Inversion formula

The Virasoro fusion kernel and its applications

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

Can write 4-point function as

$$\langle \phi(x_1)\phi(x_2)\phi(x_3)\phi(x_4)
angle \sim \sum_{\ell=0}^{\infty}\int_{rac{d}{2}-i\infty}^{rac{d}{2}+i\infty}d\Delta C(\Delta,\ell)G_{\Delta,\ell}(z,ar{z})$$

where C has poles at physical operator with residues giving the OPE coefficients

Simon's formula inverts this

 $C(\Delta, \ell) \propto \int_0^1 \int_0^1 dz d\bar{z} M_{\Delta, \ell}(z, \bar{z}) d\text{Disc}[\langle \phi(x_1)\phi(x_2)\phi(x_3)\phi(x_4) \rangle]$

6j syı	mbols
--------	-------

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

Inserting identity in inversion formula gives MFT result

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

Inserting identity in inversion formula gives MFT result

Inserting other operators gives corrections

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large *c* limits

Inserting identity in inversion formula gives MFT result Inserting other operators gives corrections Inversion of single block = 6i symbol

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large *c* limits

Inserting identity in inversion formula gives MFT result Inserting other operators gives corrections Inversion of single block = 6j symbol

 \Rightarrow 6j symbols rewrite t-channel data into s-channel data

	Problems in 2d
The Virasoro fusion kernel and its applications Yan Gobeil	What is wrong in 2 <i>d</i> ?
The lightcone bootstrap	

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

What is wrong in 2d?

• Virasoro blocks not known

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

What is wrong in 2d?

- Virasoro blocks not known
- No twist gap (T, T^2 , etc. have zero twist)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

What is wrong in 2*d*?

Virasoro blocks not known

• No twist gap (T, T^2 , etc. have zero twist)

 FKW already studied this in large c limit for HHLL with Virasoro vacuum block

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

What is wrong in 2d?

Virasoro blocks not known

• No twist gap (T, T^2 , etc. have zero twist)

 FKW already studied this in large c limit for HHLL with Virasoro vacuum block

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

We will take finite c and reproduce their results.

Outline

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

The lightcone bootstrap

2 The fusion kernel

3 Kernel and CFT data

4 Large *c* limits

<ロ> < 部> < き> < き> < き> き

2d CFT

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

Conformal transformations factorize into holomorphic and anti-holomorphic

2d CFT

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

Conformal transformations factorize into holomorphic and anti-holomorphic

 \Rightarrow Conformal blocks factorize

$$G(z, \bar{z}) = \mathcal{F}(h|z) \bar{\mathcal{F}}(\bar{h}|\bar{z})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

with
$$h = \Delta + \ell$$
 and $\bar{h} = \Delta - \ell$

2d CFT

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

Conformal transformations factorize into holomorphic and anti-holomorphic

 \Rightarrow Conformal blocks factorize

$$G(z, \bar{z}) = \mathcal{F}(h|z)\bar{\mathcal{F}}(\bar{h}|\bar{z})$$

with $h = \Delta + \ell$ and $\bar{h} = \Delta - \ell$

Crossing symmetry for $\langle \mathcal{O}_1(0)\mathcal{O}_2(z,\bar{z})\mathcal{O}_2(1)\mathcal{O}_1(\infty)\rangle$ is now

$$\sum_{s} (f_{12s})^2 \mathcal{F}_S(h_s, z) \overline{\mathcal{F}}_S(\overline{h}_s, \overline{z}) =$$

 $\sum_{t} f_{11t} f_{22t} \mathcal{F}_T(h_t, 1-z) \overline{\mathcal{F}}_T(\overline{h}_t, 1-\overline{z})$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ
Liouville notation

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcon bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

Need to use new notation:

$$c=1+6Q^2$$
 , $Q=b+b^{-1}$, $h=lpha(Q-lpha)$
 $(h,c)\Rightarrow (lpha,b)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Liouville notation

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

Need to use new notation:

$$c = 1 + 6Q^2$$
 , $Q = b + b^{-1}$, $h = \alpha(Q - \alpha)$
 $(h, c) \Rightarrow (\alpha, b)$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Operators separate in two ranges:

Discrete: $0 < h < \frac{c-1}{24} \leftrightarrow 0 < \alpha < \frac{Q}{2}$ Continuum: $h \ge \frac{c-1}{24} \leftrightarrow \alpha = \frac{Q}{2} + iP$

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

Rewrite t-channel (holomorphic) Virasoro blocks into s-channel blocks

$$\mathcal{F}_{T}(\alpha_{t}, 1-z) = \int_{C} \frac{d\alpha_{s}}{2i} \mathbb{S}_{\alpha_{s}\alpha_{t}} \mathcal{F}_{S}(\alpha_{s}, z)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

Rewrite t-channel (holomorphic) Virasoro blocks into s-channel blocks

$$\mathcal{F}_{\mathcal{T}}(\alpha_t, 1-z) = \int_{\mathcal{C}} \frac{d\alpha_s}{2i} \mathbb{S}_{\alpha_s \alpha_t} \mathcal{F}_{\mathcal{S}}(\alpha_s, z)$$

Impressive that it is known since blocks themselves not known

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

Rewrite t-channel (holomorphic) Virasoro blocks into s-channel blocks

$$\mathcal{F}_{\mathcal{T}}(\alpha_t, 1-z) = \int_{\mathcal{C}} \frac{d\alpha_s}{2i} \mathbb{S}_{\alpha_s \alpha_t} \mathcal{F}_{\mathcal{S}}(\alpha_s, z)$$

Impressive that it is known since blocks themselves not known

Poles at $\alpha_s = \alpha_1 + \alpha_2 + mb + nb^{-1}$ and reflexions $\alpha \to Q - \alpha$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

Rewrite t-channel (holomorphic) Virasoro blocks into s-channel blocks

$$\mathcal{F}_{T}(\alpha_{t}, 1-z) = \int_{C} \frac{d\alpha_{s}}{2i} \mathbb{S}_{\alpha_{s}\alpha_{t}} \mathcal{F}_{S}(\alpha_{s}, z)$$

Impressive that it is known since blocks themselves not known

Poles at $\alpha_s = \alpha_1 + \alpha_2 + mb + nb^{-1}$ and reflexions $\alpha \to Q - \alpha$

- For $\alpha_t = 0$, single poles
- For $\alpha_t \neq 0$, double poles

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

When $\alpha_1 + \alpha_2 > \frac{Q}{2}$, *C* is simple

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

When $\alpha_1 + \alpha_2 > \frac{Q}{2}$, *C* is simple

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

When $\alpha_1 + \alpha_2 < \frac{Q}{2}$, poles at $\alpha_m = \alpha_1 + \alpha_2 + mb$ can cross axis

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

When $\alpha_1 + \alpha_2 < \frac{Q}{2}$, poles at $\alpha_m = \alpha_1 + \alpha_2 + mb$ can cross axis

Support of the kernel

The Virasoro fusion kernel and its applications

Tan Goben

The lightcon bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

• For
$$\alpha_1 + \alpha_2 > \frac{Q}{2}$$
,

$$\mathcal{F}_{T}(\alpha_{t}) = \int_{0}^{\infty} dP \, \mathbb{S}_{\alpha_{s}\alpha_{t}} \mathcal{F}_{S}\left(\alpha_{s} = \frac{Q}{2} + iP\right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Support of the kernel

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcon bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

• For
$$\alpha_1 + \alpha_2 > \frac{Q}{2}$$
,

$$\mathcal{F}_{\mathcal{T}}(\alpha_t) = \int_0^\infty dP \, \mathbb{S}_{\alpha_s \alpha_t} \mathcal{F}_{\mathcal{S}}\left(\alpha_s = \frac{Q}{2} + iP\right)$$

• For
$$\alpha_1 + \alpha_2 < \frac{Q}{2}$$
,

$$\mathcal{F}_{\mathcal{T}}(\alpha_t) = -2\pi \sum_{m} \operatorname{Res}_{\alpha_s = \alpha_m} \{ \mathbb{S}_{\alpha_s \alpha_t} \mathcal{F}_{\mathcal{S}}(\alpha_s) \} + \int_0^\infty dP \, \mathbb{S}_{\alpha_s \alpha_t} \mathcal{F}_{\mathcal{S}}\left(\alpha_s = \frac{Q}{2} + iP\right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

with sum over $\alpha_m < \frac{Q}{2}$

Outline

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

The lightcone bootstrap

The fusion kernel

3 Kernel and CFT data

4 Large *c* limits

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ → 三 → つへ(

Crossing with fusion

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

Rewrite t-channel into s-channel with kernel tells us what must be there in the s-channel to reproduce what appears in t-channel.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Crossing with fusion

The Virasoro fusion kernel and its applications

Yan Gobei

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

Rewrite t-channel into s-channel with kernel tells us what must be there in the s-channel to reproduce what appears in t-channel.

Consider $\alpha_1 + \alpha_2 < \frac{Q}{2}$ and $\bar{\alpha}_1 + \bar{\alpha}_2 > \frac{Q}{2}$ and individual t-channel exchange

$$\int_{?} d\alpha_{s} d\bar{\alpha}_{s} \rho_{12s} \mathcal{F}_{S}(\alpha_{s}) \bar{\mathcal{F}}_{S}(\bar{\alpha}_{s}) = \int_{0}^{\infty} d\bar{P} \,\bar{\mathbb{S}}_{\bar{\alpha}_{s}\bar{\alpha}_{t}} \bar{\mathcal{F}}_{S}\left(\bar{\alpha}_{s} = \frac{Q}{2} + i\bar{P}\right)$$
$$f_{11t} f_{22t}\left[-2\pi \sum_{m} \underset{\alpha_{s}=\alpha_{m}}{\operatorname{Res}} \{\mathbb{S}_{\alpha_{s}\alpha_{t}} \mathcal{F}_{S}(\alpha_{s})\} + \int_{0}^{\infty} dP \,\mathbb{S}_{\alpha_{s}\alpha_{t}} \mathcal{F}_{S}\left(\alpha_{s} = \frac{Q}{2} + iP\right)\right]$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

What is needed to reproduce identity $\alpha_t = \bar{\alpha}_t = 0$?

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcon bootstrap

The fusion kernel

Kernel and CFT data

Large *c* limits

What is needed to reproduce identity $\alpha_t = \bar{\alpha}_t = 0$?

● Family of operators with \(\alpha\) = \(\alpha\)_m < \(\frac{Q}{2}\) (in discrete spectrum) for each \(\bar\alpha\) in continuum \(\Rightarrow\) "Quantum" Regge trajectories</p>

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

2 Operators with α and $\bar{\alpha}$ in continuum

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

What is needed to reproduce identity $\alpha_t = \bar{\alpha}_t = 0$?

- Family of operators with \(\alpha\) = \(\alpha\)_m < \(\frac{Q}{2}\) (in discrete spectrum) for each \(\bar\alpha\) in continuum \(\Rightarrow\) "Quantum" Regge trajectories</p>
- 2 Operators with α and $\bar{\alpha}$ in continuum

OPE coefficients of Regge operators given by

$$\rho_{12m} = -2\pi \, \bar{\mathbb{S}}_{\bar{\alpha}_s \mathbb{I}} \mathop{\mathrm{Res}}_{\alpha_s = \alpha_m} \mathbb{S}_{\alpha_s \mathbb{I}}$$

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large *c* limits

What is needed to reproduce identity $\alpha_t = \bar{\alpha}_t = 0$?

- Family of operators with \(\alpha\) = \(\alpha\)_m < \(\frac{Q}{2}\) (in discrete spectrum) for each \(\bar\alpha\) in continuum \(\Rightarrow\) "Quantum" Regge trajectories</p>
- 2 Operators with α and $\bar{\alpha}$ in continuum

OPE coefficients of Regge operators given by

$$\rho_{12m} = -2\pi \, \bar{\mathbb{S}}_{\bar{\alpha}_s \mathbb{I}} \mathop{\mathrm{Res}}_{\alpha_s = \alpha_m} \mathbb{S}_{\alpha_s \mathbb{I}}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

This is called Virasoro Mean Field Theory!

Corrections

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

Assume other operators give small corrections

$$(\rho_{12m} + \delta\rho_{12m})\mathcal{F}_{S}(\alpha_{m} + \delta\alpha_{m})\bar{\mathcal{F}}_{S} \approx \bar{\mathcal{F}}_{S}(\rho_{12m}\mathcal{F}_{S}(\alpha_{m}) + \delta\rho_{12m}\mathcal{F}_{S}(\alpha_{m}) + \rho_{12m}\delta\alpha_{m}\partial\mathcal{F}_{S}(\alpha_{m}))$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Corrections

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

Assume other operators give small corrections

$$(\rho_{12m} + \delta\rho_{12m})\mathcal{F}_{\mathcal{S}}(\alpha_m + \delta\alpha_m)\bar{\mathcal{F}}_{\mathcal{S}} \approx \bar{\mathcal{F}}_{\mathcal{S}}(\rho_{12m}\mathcal{F}_{\mathcal{S}}(\alpha_m) + \delta\rho_{12m}\mathcal{F}_{\mathcal{S}}(\alpha_m) + \rho_{12m}\delta\alpha_m\partial\mathcal{F}_{\mathcal{S}}(\alpha_m))$$

This leads to

$$\delta \alpha_{m} = f_{11t} f_{22t} \frac{\bar{\mathbb{S}}_{\bar{\alpha}_{s}\bar{\alpha}_{t}}}{\bar{\mathbb{S}}_{\bar{\alpha}_{s}\mathbb{I}}} \frac{\mathsf{dRes}}{\alpha_{s} = \alpha_{m}} \frac{\mathbb{S}_{\alpha_{s}\alpha_{t}}}{\mathsf{Res}}}{\mathsf{Res}_{\alpha_{s}=\alpha_{m}}} \frac{\mathbb{S}_{\alpha_{s}\pi_{t}}}{\mathbb{S}_{\alpha_{s}\mathbb{I}}}$$

$$\delta \rho_{12m} = -2\pi f_{11t} f_{22t} \bar{\mathbb{S}}_{\bar{\alpha}_s \bar{\alpha}_t} \operatorname{Res}_{\alpha_s = \alpha_m} \mathbb{S}_{\alpha_s \alpha_t}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

where dRes means the coefficient of double pole

Why dRes?

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcon bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

Taylor expanding double pole at $x = x_0$ gives

$$s(x)f(x) = \left(\frac{\mathsf{dRes}(s)}{(x-x_0)^2} + \frac{\mathsf{Res}(s)}{x-x_0} + s(x_0)\right) \\ \times \left(f(x_0) + (x-x_0)f'(x_0)\right)$$

Why dRes?

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcon bootstrap

The fusion kernel

Kernel and CFT data

Large *c* limits

Taylor expanding double pole at $x = x_0$ gives

$$s(x)f(x) = \left(\frac{d\text{Res}(s)}{(x-x_0)^2} + \frac{\text{Res}(s)}{x-x_0} + s(x_0)\right) \\ \times (f(x_0) + (x-x_0)f'(x_0))$$

$$= \frac{f(x_0) d\operatorname{Res}(s)}{(x-x_0)^2} + \frac{f(x_0) \operatorname{Res}(s) + f'(x_0) d\operatorname{Res}(s)}{x-x_0} + f'(x_0) \operatorname{Res}(s) + \dots$$

Why dRes?

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcon bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

Taylor expanding double pole at $x = x_0$ gives

$$s(x)f(x) = \left(\frac{d\text{Res}(s)}{(x-x_0)^2} + \frac{\text{Res}(s)}{x-x_0} + s(x_0)\right) \\ \times (f(x_0) + (x-x_0)f'(x_0))$$

$$= \frac{f(x_0) d\operatorname{Res}(s)}{(x-x_0)^2} + \frac{f(x_0) \operatorname{Res}(s) + f'(x_0) d\operatorname{Res}(s)}{x-x_0} + f'(x_0) \operatorname{Res}(s) + \dots$$

 $\Rightarrow \operatorname{Res}(s f) = f(x_0) \operatorname{Res}(s) + f'(x_0) \operatorname{dRes}(s)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Large spin asymptotics

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

At large $\bar{\alpha}_s$

 $\delta \alpha_m \sim e^{-2\pi \bar{\alpha}_t \sqrt{\ell_s}}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Large spin asymptotics

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

At large $\bar{\alpha}_s$

$$\delta \alpha_m \sim e^{-2\pi \bar{\alpha}_t \sqrt{\ell_s}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 \Rightarrow identity dominates at large spin!

Large spin asymptotics

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large *c* limits

At large $\bar{\alpha}_s$

$$\delta \alpha_m \sim e^{-2\pi \bar{\alpha}_t \sqrt{\ell_s}}$$

 \Rightarrow identity dominates at large spin!

Spectrum of Quantum Regge trajectories at large spin:

$$h_m = h_1 + h_2 + m - 2(\alpha_1 + mb)(\alpha_2 + mb) + m(m+1)b^2 + \delta h_m$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Quantum Regge trajectories

◆□ → ◆□ → ◆ 三 → ◆ 三 → のへぐ

Outline

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

The lightcone bootstrap

2 The fusion kernel

3 Kernel and CFT data

・ロト・(部・・モト・モー のへぐ

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

Reproduce global results with $c \rightarrow \infty$ and h_i fixed

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 \Rightarrow

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

Reproduce global results with $c \rightarrow \infty$ and h_i fixed

$$lpha=bh+O(b^3)$$
 as $b
ightarrow 0$

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcon bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

Reproduce global results with $c \to \infty$ and h_i fixed

$$\Rightarrow \alpha = bh + O(b^3)$$
 as $b \to 0$

Infinite number of trajectories with

$$h_m = h_1 + h_2 + m + O(b^2)$$

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcon bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

Reproduce global results with $c \to \infty$ and h_i fixed

$$\Rightarrow \alpha = bh + O(b^3)$$
 as $b \to 0$

Infinite number of trajectories with

$$h_m = h_1 + h_2 + m + O(b^2)$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Checks:

- Reproduce MFT from VMFT (exchange of identity)
- Other t-channel reproduced
- In the second second

Large c trajectories

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Semiclassical limit

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

Again $c
ightarrow \infty$ but some operators heavy $h \sim c$

Semiclassical limit

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

Again $c
ightarrow \infty$ but some operators heavy $h \sim c$

$$\Rightarrow lpha = rac{Q}{2} + ib^{-1}p$$
 or $lpha = \eta b^{-1}$ as $b o 0$
Semiclassical limit

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusior kernel

Kernel and CFT data

Large c limits

Again $c
ightarrow \infty$ but some operators heavy $h \sim c$

$$\Rightarrow \alpha = \frac{Q}{2} + ib^{-1}p$$
 or $\alpha = \eta b^{-1}$ as $b \to 0$

When $m \ll b^{-1} \sim \sqrt{c}$, $h_1 = O(c) < \frac{c}{24}$ and $h_2 = O(1)$, recover

$$h_m \approx h_1 + \sqrt{1 - \frac{24h_1}{c}}(h_2 + m_1)$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

same as FKW

Semiclassical limit

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusior kernel

Kernel and CFT data

Large c limits

Again $c
ightarrow \infty$ but some operators heavy $h \sim c$

$$\Rightarrow lpha = rac{Q}{2} + ib^{-1}p$$
 or $lpha = \eta b^{-1}$ as $b o 0$

When $m \ll b^{-1} \sim \sqrt{c}$, $h_1 = O(c) < \frac{c}{24}$ and $h_2 = O(1)$, recover

$$h_m \approx h_1 + \sqrt{1 - \frac{24h_1}{c}(h_2 + m)}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

same as FKW

When further take $rac{h_1}{c} \ll 1$, recover $h_m pprox h_1 + h_2 - rac{12h_1h_2}{c}$

which can be derived from inversion formula

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

Fusion kernel: write t-channel Virasoro block in terms of s-channel blocks

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

Fusion kernel: write t-channel Virasoro block in terms of s-channel blocks

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

2 VMFT: inversion of identity Virasoro block

Summary

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

Fusion kernel: write t-channel Virasoro block in terms of s-channel blocks

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- **2** VMFT: inversion of identity Virasoro block
- Quantum Regge Trajectories

Summary

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

Fusion kernel: write t-channel Virasoro block in terms of s-channel blocks

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- **2** VMFT: inversion of identity Virasoro block
- Quantum Regge Trajectories
- Orrections to trajectories

Summary

The Virasoro fusion kernel and its applications

Yan Gobeil

- The lightcone bootstrap
- The fusion kernel
- Kernel and CFT data
- Large c limits

Fusion kernel: write t-channel Virasoro block in terms of s-channel blocks

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- **2** VMFT: inversion of identity Virasoro block
- Quantum Regge Trajectories
- Orrections to trajectories
- Large c limits

Other results

The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

Many other applications

Virasoro blocks at late time (information paradox)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- ② Gravity interpretation
- $\textcircled{O} z \rightarrow 1 \text{ limit of Virasoro blocks}$
- HHLL Virasoro blocks
- 3 2d lightcone bootstrap